1
|
Song Y, Zou Y, Chen T, Zhang Z, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of α-Hydroxy Ketones Enabled by a Carboxylic Acid Additive Promotion Strategy. Angew Chem Int Ed Engl 2025:e202504159. [PMID: 40265970 DOI: 10.1002/anie.202504159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Highly enantioselective hydrogenation of α-hydroxy ketones was achieved by applying the catalytic combination of cobalt acetate and chiral Ph-BPE ligand, supplemented by a carboxylic acid additive promotion strategy. The carboxylic acid additive significantly increases both reactivity and enantioselectivity, allowing for the highly efficient generation of chiral 1,2-diols with up to 99% ee. The application utility is proved through derivations and a total synthesis of (R)-(-)-eliprodil. Mechanistic studies, including control experiments and DFT calculations, support the proposed catalytic mechanism and explain the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yuxi Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Mendelsohn LN, MacNeil CS, Esposito MR, Pabst TP, Leahy DK, Davies IW, Chirik PJ. Asymmetric Hydrogenation of Indazole-Containing Enamides Relevant to the Synthesis of Zavegepant Using Neutral and Cationic Cobalt Precatalysts. Org Lett 2024; 26:2718-2723. [PMID: 37270693 DOI: 10.1021/acs.orglett.3c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cobalt-catalyzed asymmetric hydrogenation of indazole-containing enamides relevant to the synthesis of the calcitonin gene-related peptide (CGRP) receptor antagonist, zavegepant (1), approved for the treatment of migraines, is described. Both neutral bis(phosphine)cobalt(II) and cationic bis(phosphine)cobalt(I) complexes served as efficient precatalysts for the enamide hydrogenation reactions, providing excellent yield and enantioselectivities (up to >99.9%) for a range of related substrates, though key reactivity differences were observed. Hydrogenation of indazole-containing enamide, methyl (Z)-2-acetamido-3-(7-methyl-1H-indazol-5-yl)acrylate, was performed on a 20 g scale.
Collapse
Affiliation(s)
- Lauren N Mendelsohn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Connor S MacNeil
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Madison R Esposito
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David K Leahy
- Biohaven, LTD, New Haven, Connecticut 06510, United States
| | - Ian W Davies
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Chakrabortty S, de Bruin B, de Vries JG. Cobalt-Catalyzed Asymmetric Hydrogenation: Substrate Specificity and Mechanistic Variability. Angew Chem Int Ed Engl 2024; 63:e202315773. [PMID: 38010301 DOI: 10.1002/anie.202315773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.
Collapse
Affiliation(s)
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
5
|
Yang H, Hu Y, Zou Y, Zhang Z, Zhang W. Cobalt-Catalyzed Efficient Asymmetric Hydrogenation of α-Primary Amino Ketones. JACS AU 2023; 3:2981-2986. [PMID: 38034968 PMCID: PMC10685343 DOI: 10.1021/jacsau.3c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Based on an amino-group-assisted coordination strategy and a proton-shuttle-activated outer-sphere mode, the cobalt-catalyzed asymmetric hydrogenation of α-primary amino ketones has been developed, resulting in the efficient synthesis of chiral vicinal amino alcohols bearing functionalized aryl rings in high yields and enantioselectivities (up to 99% enantiomeric excess (ee)) within 0.5 h.
Collapse
Affiliation(s)
- Huiwen Yang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Hu
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yashi Zou
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| |
Collapse
|
6
|
Lu P, Wang H, Mao Y, Hong X, Lu Z. Cobalt-Catalyzed Enantioconvergent Hydrogenation of Minimally Functionalized Isomeric Olefins. J Am Chem Soc 2022; 144:17359-17364. [DOI: 10.1021/jacs.2c08525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yihui Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Du Q, Zhang L, Gao F, Wang L, Zhang W. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Epoxides and Aziridines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|