1
|
Boidi G, Ronai B, Heift D, Benini F, Varga M, Righi MC, Rosenkranz A. Tribology of 2D black phosphorus - Current state-of-the-art and future potential. Adv Colloid Interface Sci 2024; 328:103180. [PMID: 38754213 DOI: 10.1016/j.cis.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Since the first mechanical exfoliation of graphene in 2004, the interest in 2D materials has significantly risen due to their outstanding property combination. Multiple 2D materials have been synthesized until today, while black phosphorus (BP) resembles one of their latest additions. The unique properties of BP, especially for electronic and optical devices (i.e., high carrier mobility and electrical conduction, field-effect transistor, layer-dependent bandgap, anisotropic transport), have gained notable attention. However, its layered structure, similar to those of graphene and MoS2, is also advantageous to optimize the friction and wear performance. Moreover, the strong in-plane covalent bonds and weak interlayer van-der-Waals forces favour the formation of low-friction and wear-resistant films. Although BP holds a great tribological potential, the literature to date on this topic is rather scarce. Therefore, it is a timely moment to holistically summarize the synthesis approaches and properties of BP thus guiding interested researchers to use it in mechanical/tribological applications. The existing state-of-the-art regarding tribological research is critically discussed and compared to other 2D materials thus highlighting existing research gaps and paving the way for future research activities.
Collapse
Affiliation(s)
- Guido Boidi
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Bettina Ronai
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Dominikus Heift
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK
| | - Francesca Benini
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Bologna 40127, Italy
| | - Markus Varga
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Maria Clelia Righi
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Bologna 40127, Italy
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago 8370415, Chile.
| |
Collapse
|
2
|
Shutt RRC, Aw ESY, Liu Q, Berry-Gair J, Lancaster HJ, Said S, Miller TS, Corà F, Howard CA, Clancy AJ. Investigating the mechanism of phosphorene nanoribbon synthesis by discharging black phosphorus intercalation compounds. NANOSCALE 2024; 16:1742-1750. [PMID: 38197428 DOI: 10.1039/d3nr05416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.
Collapse
Affiliation(s)
- Rebecca R C Shutt
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Eva S Y Aw
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Qili Liu
- Department of Chemistry, University College London, London, WC1E 0AJ, UK.
| | - Jasper Berry-Gair
- Department of Chemistry, University College London, London, WC1E 0AJ, UK.
| | - Hector J Lancaster
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Samia Said
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Thomas S Miller
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Furio Corà
- Department of Chemistry, University College London, London, WC1E 0AJ, UK.
| | - Christopher A Howard
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Adam J Clancy
- Department of Chemistry, University College London, London, WC1E 0AJ, UK.
| |
Collapse
|