1
|
Huang C, Xie ZZ, Gao J, Xiang M, Xiang HY, Chen K, Yang H. Photosensitized Imino-Thiocyanation of Alkenes. Org Lett 2025; 27:1979-1983. [PMID: 39960045 DOI: 10.1021/acs.orglett.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A metal-free photosensitized 1,2-imino-thiocyanation of olefins has been established by using the easily accessible bifunctional reagent S-cyano-N-(diphenylmethylene) thiohydroxylamine. A wide range of olefins were successfully transformed into the corresponding β-iminothiocyanates in moderate to high yields. This protocol stands out for its metal-free nature, broad substrate compatibility, and high atom and step economy, providing an effective strategy for assembling β-amino thiocyanate-containing scaffolds.
Collapse
Affiliation(s)
- Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Mei Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
2
|
Pu T, Wu SH, Cai L, Pu W, Yuan Y, Zhuang Z, Yang S, Wang L. Regio- and Stereoselective β-Sulfonylamination of Alkynes via Photosensitized Bifunctional N-S Bond Homolysis. Org Lett 2024; 26:10604-10610. [PMID: 39629853 DOI: 10.1021/acs.orglett.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nitrogen central radicals (NCRs) are versatile synthetic intermediates for creating functional nitrogen-containing molecules. Herein, a photosensitized β-sulfonylamination of terminal alkynes as well as acetylene has been established by employing N-sulfonyl heteroaromatics as bifunctional reagents (BFRs) to efficiently deliver versatile (E)-β-sulfonylvinylamines with excellent regio- and stereoselectivities. Mechanistic studies suggest a base-accelerated energy transfer (EnT) photocatalysis involving aromatic NCR formation, radical addition to alkynes, and sulfonylation processes.
Collapse
Affiliation(s)
- Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Wenjia Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Shumin Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
3
|
Garrido-González JJ, Medrano-Uribe K, Rosso C, Humbrías-Martín J, Dell'Amico L. Photocatalytic Synthesis and Functionalization of Sulfones, Sulfonamides and Sulfoximines. Chemistry 2024; 30:e202401307. [PMID: 39037368 DOI: 10.1002/chem.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 07/23/2024]
Abstract
Sulfur(VI)-based functional groups are popular scaffolds in a wide variety of research fields including synthetic and medicinal chemistry, as well as chemical biology. The growing interest in sulfur(VI)-containing molecules has motivated the scientific community to explore new methods to synthesize and modify them. Here, photocatalysis plays a key role granting access to new types of reactivity under mild reaction conditions. In this Perspective, we present a selection of works reported in the last six years focused on the photocatalytic assembly and reactivity of sulfones, sulfonamides, and sulfoximines. We addressed the key synthetic intermediates for each transformation, while discussing limitations and strength points of the protocols. Future directions of the field are finally presented.
Collapse
Affiliation(s)
- José J Garrido-González
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Katy Medrano-Uribe
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Cristian Rosso
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Jorge Humbrías-Martín
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
4
|
Sun Z, Zhang J, Du X, Liu L, Gao S, Qi C, Li X, Xu X. Photoinduced EnT-mediated sulfonamidylimination of alkenes and (hetero)arenes with iminophenylacetic acid oxime esters. Chem Commun (Camb) 2024; 60:7934-7937. [PMID: 38984732 DOI: 10.1039/d4cc02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A photoinduced EnT-mediated generation of sulfonamidyl radicals has been accomplished using rationally designed iminophenylacetic acid oxime ester reagents under metal-free conditions. This approach offers a mild, regio- and diastereoselective synthesis of N-sulfonyl diamines via diamination of alkenes and (hetero)arenes.
Collapse
Affiliation(s)
- Zetian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianting Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaohua Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lulu Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuo Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chenchen Qi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Xiao ZL, Xie ZZ, Yuan CP, Deng KY, Chen K, Chen HB, Xiang HY, Yang H. Photosensitized 1,2-Difunctionalization of Alkenes to Access β-Amino Sulfonamides. Org Lett 2024; 26:2108-2113. [PMID: 38440974 DOI: 10.1021/acs.orglett.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A metal-free photosensitized 1,2-imino-sulfamoylation of olefins by employing a tailor-made sulfamoyl carbamate as the difunctionalization reagent has been established. This protocol exhibits versatility across a broad substrate scope, including aryl and aliphatic alkenes, leading to the synthesis of diverse β-imino sulfonamides in moderate to good yields. This method is characterized by its metal-free reaction system, mild reaction conditions, excellent regioselectivity, and high atom economy, serving as a promising platform for the preparation of β-amino sulfonamide-containing molecules, particularly in the context of drug discovery.
Collapse
Affiliation(s)
- Ze-Long Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., C Park of Jinxi Xiangliao Industry, Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
6
|
Zhuang Z, Sun Y, Zhong Y, He Q, Zhang X, Yang C. Visible-Light-Induced Decarboxylative Aminosulfonylation of (Hetero)aryl Carboxylic Oxime Esters. Org Lett 2024; 26:713-718. [PMID: 38214493 DOI: 10.1021/acs.orglett.3c04142] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Sulfonamides are important structures in pharmaceuticals, agrochemicals, and organocatalysts, yet the rapid and benign synthesis of these compounds is still a great challenge. Herein we report a photoinduced method for synthesizing sulfonamides from (hetero)aryl carboxylic acid oxime esters. This reaction proceeds via one-pot cascade radical-radical cross-coupling by energy-transfer-mediated photocatalysis. A wide substrate scope including (hetero)aryl substrates and late-stage modification of pharmaceutical molecular entities reveal its generality.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanchen Zhong
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Paulus F, Stein C, Heusel C, Stoffels TJ, Daniliuc CG, Glorius F. Three-Component Photochemical 1,2,5-Trifunctionalizations of Alkenes toward Densely Functionalized Lynchpins. J Am Chem Soc 2023; 145:23814-23823. [PMID: 37852246 DOI: 10.1021/jacs.3c08898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.
Collapse
Affiliation(s)
- Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Corinna Heusel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias J Stoffels
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|