1
|
Bhattacharjee S, Mondal S, Ghosh A, Banerjee S, Das AK, Bhaumik A. Rational Design of Highly Porous Donor-Acceptor Based Conjugated Microporous Polymer for Photocatalytic Benzylamine Coupling Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406723. [PMID: 39358942 DOI: 10.1002/smll.202406723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed. The CBZ-CMP framework is made through the polycondensation of 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl using FeCl3 as a catalyst. The CBZ-CMP shows very high BET surface area of 1536 m2 g-1 together with unimodal porosity (ca. 1.7 nm supermicropore), nanowire-like particle morphology (16-18 nm diameter), and low band gap property. The bi-phenyl moiety functions as the electron accepting center and the carbazole unit acts as the donor center, which accounts for the low band gap energy of CBZ-CMP. This nanoporous semiconducting CBZ-CMP material for photocatalytic benzylamine coupling reaction is explored, where it shows good conversion together with high selectivity under mild reaction conditions. This study offers simple method of preparation of a D-A-D-based porous photocatalyst for sustainable synthesis of value-added organics.
Collapse
Affiliation(s)
- Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumanta Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
2
|
Saha J, Banerjee S, Malo S, Bankura A, Ghosh A, Das AK. Visible Light-Induced Regioselective E to Z Isomerization of Polarized 1,3-Dienes: Experimental and Theoretical Insights. J Org Chem 2024; 89:15964-15971. [PMID: 39404650 DOI: 10.1021/acs.joc.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The stereocontrol of E → Z isomerization on a (1E,3E)-diene, instead of a simple alkene, can be more challenging due to the increased number of isomerization possibilities. Herein, we report visible light-mediated regioselective (1E,3E → 1E,3Z) isomerization of (1E,3E)-diene. The reaction conditions are mild and easy to apply and can be applied to a wide range of substances, with an excellent yield and selectivity (90:10). It is evident from the crystal structures that the cause of regioselectivity for the isomerization of 1,3-diene may not be limited to 1,3-allylic strains; CH-π interaction may also play a vital role. Computational studies suggest that this regioselective photoisomerization is a thermodynamically feasible process and requires the accumulation of spin density on the modified double bond for the transformation to occur.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhijit Bankura
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Abhijit K Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Biswas S, Chowdhury T, Banerjee S, Dutta K, Das AK, Das D. Improving the Efficiency of Luminescent Zn(II)-Modified N-Doped GOQD Nanomaterials in Parkinson's Disease Treatment: A Theoretical Mechanistic Framework Exploring Doping Effect. Chem Asian J 2024; 19:e202400629. [PMID: 39041342 DOI: 10.1002/asia.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Levodopa, a widely prescribed drug in Parkinson's disease treatment, stands as the foremost prodrug of dopamine. An affordable self-testing kit is utilized to monitor levodopa content in anti-parkinson drugs in human serum. A photoluminescent trinuclear Zn(II) complex [Zn3(L)2(κ1-OAc)2(κ2-OAc)2] has been synthesized, which cleaves into mononuclear ZC in aqueous solution. ZC was found to detect L-Dopa in Tris-HCl buffer, exhibiting a moderate decrease in PL-emission. The real-life utility of the ZC probe is limited, for its lower sensitivity (LOD 35.3 μM) and separation challenges. Therefore, an interface between homogeneous and heterogeneous supports has been explored, leading to the strategic development of NGOZC, where ZC was grafted onto NGOQD (Graphene oxide quantum dots). This material enables naked- eye detection under both ambient and UV light with color change from bright cyan to green, followed by dark. The nitrogen doping effect was investigated by several comparative investigations involving the synthesis of ZC-grafted GOQD, leading to enhanced quenching performance. Steady-state and time-resolved fluorescence titration study, morphological analysis, and computational calculations have been performed to get insights into the sensing mechanism. To the best of our knowledge, this as-synthesized NGOZC (LOD 1.78 nM) represents a promising strategy and platform for applications in biosensors, especially for Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92A. P. C. Road, Kolkata, 700009, India
| | - Tania Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Koushik Dutta
- Department of Polymer Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2 A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92A. P. C. Road, Kolkata, 700009, India
| |
Collapse
|
4
|
Shah SJ, Singh A, Goswami D, Ishida M, Rath SP. Reversible open-closed conformational switching of nano-size metalloporphyrin dimers triggered by light and temperature. Dalton Trans 2024; 53:6758-6765. [PMID: 38533553 DOI: 10.1039/d4dt00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The current work demonstrates the reversible control of substantial molecular motion in 'nano-sized' molecules, where two structural isomers can 'open' and 'close' their cavities in response to light or heat. The isomers differ widely in their photophysical properties, including colour, polarity, two-photon absorption and π-conjugation, and can easily be separated through column chromatography and thus have wide applicability.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ajitesh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
5
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|