1
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
2
|
Yoshida K, Suzuki T, Biju V, Takano Y. Adaptable Blueprint for Non-metal Near-Infrared Organic Photocatalysts by Aromatic Sulfones. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4813-4820. [PMID: 39801255 DOI: 10.1021/acsami.4c17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We present a versatile approach to designing and utilizing high-performance nonmetal near-infrared (NIR) organic photocatalysts based on aromatic sulfones. Current NIR photocatalysts are mainly metal complexes and inorganic materials, while the few reported nonmetal organic NIR photocatalysts primarily use photosensitization to produce active species such as singlet oxygen. Our sulfone-rosamine-based redox photocatalyst 3 demonstrates exceptional capabilities, including high ability for metal-free photo-oxidative bromination, intrinsically oxygen-independent redox reactions, and remarkable photostability with a turnover number (TON) exceeding 2800. We showcase the photocatalyst's efficacy in photo-oxidative bromination of aromatic compounds under 738 nm illumination. The reaction mechanism is elucidated through electrochemical studies, time-resolved spectral measurements, and DFT calculations. Transient absorption measurements using the randomly interleaved pulse train (RIPT) method reveal the photoexcited state of 3 in the reaction. The photocatalyst 3 demonstrated its versatility for several aromatic substances, including those exhibiting strong light absorption in the visible region. This aromatic sulfone-based approach offers a robust blueprint for developing nonmetal NIR organic photocatalysts with superior photo-oxidation ability and stability, addressing key limitations of conventional organic NIR photocatalysts.
Collapse
Affiliation(s)
- Kazuya Yoshida
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan
| | | | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo 001-0020, Japan
| | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo 001-0020, Japan
| |
Collapse
|
3
|
Xuan J, Yu J, Huang C. Research Progress of Cyanine-Based Near-Infrared Fluorescent Probes for Biological Application. Chembiochem 2024; 25:e202400467. [PMID: 39039605 DOI: 10.1002/cbic.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cyanine-based near-infrared (NIR) fluorescent probes have played vital roles in biological application due to their low interference from background fluorescence, deep tissue penetration, high sensitivity, and minimal photodamage to biological samples. They are widely utilized in molecular recognition, medical diagnosis, biomolecular detection, and biological imaging. Herein, we provide a review of recent advancements in cyanine-based NIR fluorescent probes for the detection of pH, cells, tumor as well as their application in photothermal therapy (PTT) and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jigao Xuan
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiajun Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
4
|
Frey J, Goddard JP, Cormier M. Catalytic Deprotection of Alkyne Dicobalt Hexacarbonyl Complexes using Near-Infrared Photocatalysis. J Org Chem 2024; 89:15217-15224. [PMID: 39370925 DOI: 10.1021/acs.joc.4c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dicobalt hexacarbonyl complexes are well-known for their applications in the Nicholas reaction or simply as a protecting group for alkynes. To recover the alkyne, demetalation is necessary, which usually involves a stoichiometric amount of an oxidizing agent or a strong ligand. This article reports a demetalation methodology based on a photocatalytic process. This approach employs a photocatalyst under aerobic conditions, and the optimal results were achieved using mild near-infrared irradiation. A mechanistic investigation is also presented to elucidate how the photocatalytic system promotes this deprotection. This tool is compatible with the one-pot reaction and orthogonal deprotection of alkynes, offering new perspectives for further applications.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| |
Collapse
|
5
|
Johnson RE, Pounder A, van der Zalm J, Chen A, Bell IJ, Van Raay TJ, Wetmore SD, Manderville RA. Thieno[3,2- b]thiophene for the Construction of Far-Red Molecular Rotor Hemicyanines as High-Affinity DNA Aptamer Fluorogenic Reporters. Anal Chem 2024; 96:16252-16259. [PMID: 39360861 DOI: 10.1021/acs.analchem.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The construction of far-red fluorescent molecular rotors (FMRs) is an imperative task for developing nucleic acid stains that have superior compatibility with cellular systems and complex matrices. A typical strategy relies on the methine extension of asymmetric cyanines, which unfortunately fails to produce sensitive rotor character. To break free from this paradigm, we have synthesized far-red hemicyanines using a dimethylamino thieno[3,2-b]thiophene donor. The resultant probes, designated as ATh2Ind and ATh2Btz, possess excitation maxima (λmax) of >600 nm and have been rigorously characterized by NMR, electrochemistry, and computational methods. The dyes possess alternating charge patterns like indodicarbocyanine (Cy5), but with twisted intramolecular charge transfer (TICT) rotational barriers at 60°, akin to the classical FMR thiazole orange (TO1). ATh2Btz also displays cyanine characteristics, enhancing its response upon binding to nucleic acids and allowing for efficient staining of cellular nuclei. When binding to the DNA aptamer for quinine (MN4), ATh2Btz exhibits a Kd of 17 nM, a 660-fold light-up response, brightness (Φfl x εmax) of ∼37,000 M-1cm-1, and λex/λem of 655/677 nm. The resulting far-red DNA-based MN4-ATh2Btz platform has been termed "pomegranate."
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Austin Pounder
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Joshua van der Zalm
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ian J Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Francés-Soriano L, Bellezza D, Ferrera-González J, González-Béjar M, Pérez-Prieto J. NIR-triggered photooxygenation of α-terpinene with upconversion nanohybrids. NANOSCALE ADVANCES 2024; 6:d4na00528g. [PMID: 39355838 PMCID: PMC11440474 DOI: 10.1039/d4na00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Upconversion nanohybrids (UCNHs) consisting of rose bengal (RB) and upconversion nanoparticles (UCNPs) are able to promote terpinene oxidation upon near-infrared irradiation. The photophysical events occurring upon NIR-irradiation of the UCNH correlate well with the synthetic protocol used to prepare the UCNHs (RB loading and aggregation). These results highlight the importance of the optimization of UCNH composition for the photocatalysis outcome.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Delia Bellezza
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| |
Collapse
|
7
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
8
|
Ishikawa S, Maeda H, Segi M, Furuyama T. Dehydro[12]- and [18]annulene-Fused Ball-Shaped Ruthenium Complex Oligomers: Synthesis, Aromatic/Antiaromatic Effect, and Symmetry for Near-Infrared Optical Properties. Chemistry 2024; 30:e202400407. [PMID: 38486467 DOI: 10.1002/chem.202400407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/11/2024]
Abstract
The appropriate arrangement of near-infrared (NIR) chromophores allows for the modification of the peak wavelength in the NIR region and efficient use of NIR light. However, the preparation of novel NIR chromophores using simple procedures remains a formidable challenge. Herein, we report the synthesis of ball-shaped ruthenium complex oligomers. The metal complexes can be synthesized in a single step and interact strongly with NIR light. Alkyne-substituted low-symmetry ball-shaped ruthenium complexes were synthesized and subjected to Eglinton coupling to obtain dehydro[12] and [18]annulene-fused dimers and trimers. Fine-tuning of the reaction conditions led to the selective synthesis of the target oligomers. NMR spectroscopy confirmed that the 18π-aromatic and 12π-antiaromatic properties of the annulene influenced the ruthenium complex chromophore, and magnetic circular dichroism spectroscopy showed changes in the electronic structure of their excited state owing to molecular-symmetry differences. The absorption coefficient in the NIR region of the absorption spectra of the oligomers increased significantly, supporting the efficient use of light by oligomerization. The formation of oligomers using ball-shaped metal complexes is a simple and effective strategy for controlling NIR optical properties.
Collapse
Affiliation(s)
- Sari Ishikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|