Shimizu M, Nishimura K, Mineyama M, Terao R, Sakurai T, Sakaguchi H. Bis(tricyclic) Aromatic Enes That Exhibit Efficient Fluorescence in the Solid State.
Molecules 2024;
29:5361. [PMID:
39598750 PMCID:
PMC11596714 DOI:
10.3390/molecules29225361]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
We report herein that bis(tricyclic) aromatic enes (BAEs) consisting of 6-6-6-membered frameworks such as acridine, xanthene, thioxanthene, and thioxanthene-S,S-dioxide act as a new class of organic luminophores that exhibit blue-to-green fluorescence in the solid state and in polymer film with good to excellent quantum yields. The BAEs were prepared by the palladium-catalyzed double cross-coupling reaction of phenazastannines or 10,10-dimethyl-10H-phenothiastannin with 9-(dibromomethylene)xanthene, 9-(dibromomethylene)thioxanthene, or 9-(dibromomethylene)-9H-thioxanthene-10,10-dioxide. Microcrystals or powder samples of the BAEs exhibited brilliant fluorescence with good to high quantum yields (Φ = 0.45-0.88). Furthermore, more efficient emission of blue-to-green light (Φ = 0.59-0.91) was observed for the BAEs dispersed in the poly(methyl methacrylate) (PMMA) films. Density functional theory (DFT) calculations suggest that the photo-absorption of the (thio)xanthene moiety-containing BAEs proceeds via π-π* transitions, whereas the optical excitation of 10,10-dioxido-9H-thioxanthene moiety-containing BAEs involves an intramolecular charge transfer from the acridine/thioxanthene part to the electron-accepting 10,10-dioxido-9H-thioxanthene moiety.
Collapse