1
|
Cheng L, Huang Y, Ahmad M, Liu Y, Xu J, Liu Y, Seidi F, Wang D, Lin Z, Xiao H. N-Vacancy Enriched Porous BN Fibers for Enhanced Polysulfides Adsorption and Conversion in High-Performance Lithium-Sulfur Batteries. Chemistry 2024; 30:e202402200. [PMID: 39004611 DOI: 10.1002/chem.202402200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/16/2024]
Abstract
Severe shuttle effect of soluble polysulfides and sluggish redox kinetics have been thought of as the critical issues hindering the extensive applications of lithium-sulfur batteries (LSBs). Herein, one-dimensional boron nitride (1D BN) fibers with abundant pores and sufficient N-vacancy defects were synthesized using a thermal crystallization following a pre-condensation step. The 1D structure of BN facilitates unblocked ions diffusion pathways during charge/discharge cycles. The embedded pores within the polar BN strengthen the immobilization of polysulfides via both physical confinement and chemical interaction. Moreover, the highly exposed active surface area and intentionally created N-vacancy sites substantially promote reaction kinetics by lowering the energy barriers of the rate-limiting steps. After incorporating with conductive carbon networks and elemental S, the as-prepared S/Nv-BN@CBC cathode of LSBs deliver an initial discharge capacity of up to 1347 mAh g-1 at 200 mA g-1, while maintaining a low decay rate of 0.03 % per cycle over 1000 cycles at 1600 mA g-1. This work offers an effective strategy to mitigate the shuttle effect and highlights the significant potential of defect-engineered BN in accelerating the reaction kinetics of LSBs.
Collapse
Affiliation(s)
- Long Cheng
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue Liu
- FAMSUN New Energy BU, Famsun Group Changzhou Huacai New Energy technology Co., Ltd., Changzhou, 100043, China
| | - Jiaqi Xu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yihong Liu
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongqing Wang
- International Innovation Center for Forest Chemicals & Materials, Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zixia Lin
- Testing center, Yangzhou University, Yangzhou, 225009, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5 A3, Canada
| |
Collapse
|
2
|
Pan L, Kang X, Gao S, Duan X. Design of Single-Atom Catalysts on C 5N 2 for Nitrogen Fixation at Ambient Conditions: A First-Principles Study. Chemistry 2024:e202401675. [PMID: 38842477 DOI: 10.1002/chem.202401675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Single atom catalysts (SACs) exhibit the flexible coordination structure of the active site and high utilization of active atoms, making them promising candidates for nitrogen reduction reaction (NRR) under ambient conditions. By the aid of first-principles calculations based on DFT, we have systematically explored the NRR catalytic behavior of thirteen 4d- and 5d-transition metal atoms anchored on 2D porous graphite carbon nitride C5 ${_5 }$ N2 ${_2 }$ . With high selectivity and outstanding activity, Zr, Nb, Mo, Ta, W and Re-doped C5 ${_5 }$ N2 ${_2 }$ are identified as potential nominees for NRR. Particularly, Mo@C5 ${_5 }$ N2 ${_2 }$ possesses an impressive low limiting potential of -0.39 V (corresponding to a very low temperature and atmospheric pressure), featuring the potential determining step involving *N-N transitions to *N-NH via the distal path. The catalytic performance of TM@C5 ${_5 }$ N2 ${_2 }$ can be well characterized by the adsorption strength of intermediate *N2 ${_2 }$ H. Moreover, there exists a volcanic relationship between the catalytic property UL ${_{\rm{L}} }$ and the structure descriptor Ψ ${{{\Psi }}}$ , which validates the robustness and universality of Ψ ${{{\Psi }}}$ , combined with our previous study. This work sheds light on the design of SACs with eminent NRR performance.
Collapse
Affiliation(s)
- Liying Pan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shan Gao
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- Laboratory of Clean Energy Storage and Conversion, Ningbo, 315211, China
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- Laboratory of Clean Energy Storage and Conversion, Ningbo, 315211, China
| |
Collapse
|
3
|
Ni Z, Yin F, Zhang J, Kofie G, Li G, Chen B, Guo P, Shi L. Boosting Electrocatalytic N 2 Reduction to NH 3 by Enhancing N 2 Activation via Interaction between Au Nanoparticles and MIL-101(Fe) in Neutral Electrolytes. Chemistry 2024; 30:e202401010. [PMID: 38517333 DOI: 10.1002/chem.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) has attracted much attention as a sustainable ammonia production technology, but it needs further exploration due to its slow kinetics and the existence of competitive side reactions. In this research, xAu/MIL-101(Fe) catalysts were obtained by loading gold nanoparticles (Au NPs) onto MIL-101(Fe) using a one-step reduction strategy. Herein, MIL-101(Fe), with high specific surface area and strong N2 adsorption capacity, is used as a support to disperse Au NPs to increase the electrochemical active surface area. Au NPs, with a high NRR activity, is introduced as the active site to promote charge transfer and intermediate formation rates. More importantly, the strong interaction between Au NPs and MIL-101(Fe) enhances the electron transfer between Au NPs and MIL-101(Fe), thereby enhancing the activation of N2 and achieving efficient NRR. Among the prepared catalysts, 15 %Au/MIL-101(Fe) has the highest NH3 yield of 46.37 μg h-1 mg-1 cat and a Faraday efficiency of 39.38 % at -0.4 V (vs. RHE). In-situ FTIR reveals that the NRR mechanism of 15 %Au/MIL-101(Fe) follows the binding alternating pathway and also indicates that the interaction between Au NPs and MIL-101(Fe) strengthens the activation of the N≡N bond in the rate-limiting process, thereby accelerating the NRR process.
Collapse
Affiliation(s)
- Ziyang Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
| | - Jie Zhang
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gideon Kofie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Guoru Li
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
| | - Biaohua Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Pengju Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Liuliu Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|