1
|
Wang Y, Johnson JC, Palmer KG, Wei P, Adams ER, Lahm ME, Schaefer HF, Robinson GH. Amidinate- and Dithiolene-Based Silicon Complexes. Organometallics 2025; 44:802-806. [PMID: 40248338 PMCID: PMC12001252 DOI: 10.1021/acs.organomet.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025]
Abstract
Reactions of the amidinato-silylene chloride PhC( t BuN)2SiCl (1) with imidazole-based dithione dimer 2, lithium dithiolene radical 3, and dithiolate dimer 4 result in the synthesis of a series of silicon complexes 5-7, respectively, containing both amidinato and dithiolene ligands. 7 is the first structurally characterized silicon(II) dithiolene complex. The structural and bonding characteristics of 5-7 have been probed by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - John C. Johnson
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Kayla G. Palmer
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Pingrong Wei
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Earle R. Adams
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Mitchell E. Lahm
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Henry F. Schaefer
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H. Robinson
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
2
|
Pandey MK, Hendi Z, Wang X, Muhammed S, Kumar A, Singh MK, Herbst-Irmer R, Stalke D, Parameswaran P, Roesky HW. Synthesis and characterization of triazole-functionalized mixed-valent Si(I)-Si(III) and bis(germylene) compounds. Chem Commun (Camb) 2025; 61:5581-5584. [PMID: 40052216 DOI: 10.1039/d4cc06247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The synthesis of mixed-valent main-group compounds is a challenging goal that has attracted significant interest recently. The reaction of 1-(2-bromophenyl)-4-phenyl-1H-1,2,3-triazole with nBuLi, followed by treatment with [(PhC(tBuN)2SiCl)], yielded a rare Si(I)-Si(III) compound (1), whereas treatment with [(PhC(tBuN)2GeCl)] produced a bis(germylene) compound (2).
Collapse
Affiliation(s)
- Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Xiaobai Wang
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Shahila Muhammed
- National Institute of Technology Calicut, Kozhikode 673601, India.
| | - Arun Kumar
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | | | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
3
|
Yao S, Budde MS, Yang X, Xiong Y, Zhao L, Driess M. Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λ 4Si-λ 3C Double Bonds. Angew Chem Int Ed Engl 2025; 64:e202414696. [PMID: 39305142 DOI: 10.1002/anie.202414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/01/2024]
Abstract
The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L=PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl=2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with 1 furnishes the related 1,3-disilacyclopentadiene 4 but with an amidinato silylene pendent attached to the Si=C carbon ring atom.
Collapse
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Markus Stefan Budde
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
4
|
Hendi Z, Pandey MK, Kushvaha SK, Roesky HW. Recent progress in transition metal complexes featuring silylene as ligands. Chem Commun (Camb) 2024; 60:9483-9512. [PMID: 39119696 DOI: 10.1039/d4cc01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Silylenes, divalent silicon(II) compounds, once considered highly reactive and transient species, are now widely employed as stable synthons in main-group and coordination chemistry for myriad applications. The synthesis of stable silylenes represents a major breakthrough, which led to extensive exploration of silylenes in stabilizing low-valent main-group elements and as versatile ligands in coordination chemistry and catalysis. In recent years, the exploration of transition metal complexes stabilized with silylene ligands has captivated significant research attention. This is due to their robust σ-donor characteristics and capacity to stabilize transition metals in low valent states. It has also been demonstrated that the transition metal complexes of silylenes are effective catalysts for hydroboration, hydrosilylation, hydrogenation, hydrogen isotope exchange reactions, and small molecule activation chemistry. This review article focuses on the recent progress in the synthesis and catalytic application of transition metal complexes of silylenes.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
5
|
Kushvaha SK, Gorantla SMNVT, Kallenbach P, Herbst-Irmer R, Stalke D, Roesky HW. Preparation of a high-coordinated-silicon-centered spiro-cyclic compound. Dalton Trans 2024; 53:11410-11416. [PMID: 38900062 DOI: 10.1039/d4dt00627e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Silicon compounds containing silicon-silicon bond with a variety of unusual oxidation states are quite important, because their high reactivity leads to the formation of a variety of silicon compounds. The isolation of such compounds with unusual oxidation states requires a resilient synthetic strategy. Herein, we report the synthesis of a silicon based spirocyclic compound containing a hyper-valent silicon atom and a silicon-silicon bond. The computational calculations employing natural bond orbital (NBO) analysis and energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) reveal that the nature of bonding between the silicon atoms is of an electron sharing nature.
Collapse
Affiliation(s)
| | - Sai Manoj N V T Gorantla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Paula Kallenbach
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| |
Collapse
|
6
|
Liu C, Schmidtmann M, Müller T. A Bis(silylene)silole - synthesis, properties and reactivity. Dalton Trans 2024; 53:10446-10452. [PMID: 38855883 DOI: 10.1039/d4dt01112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A 1,1-bis(silylene)silole has been synthesised by a double salt-metathesis reaction from potassium silacyclopentadienediide, K2[1], and an amidinato-stabilized silylene chloride in a 1 : 2 ratio. The red colour of the title compound is due to the lp(Si)/π*(silole) transition. This band is bathochromically shifted compared to that of other 1,1-bissilylsiloles suggesting enhanced conjugation between the silole π-system and the newly formed Si(II)-Si(IV)-Si(II) group. The bissilylene is easily oxidised by the elemental chalcogens S, Se, and Te and forms a bissilaimide by reaction with an arylazide.
Collapse
Affiliation(s)
- Chenghuan Liu
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Marc Schmidtmann
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Thomas Müller
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| |
Collapse
|
7
|
Pandey MK, Hendi Z, Wang X, Bhandari A, Singh MK, Rachuy K, Kumar Kushvaha S, Herbst-Irmer R, Stalke D, Roesky HW. Stabilization of NH- Group Adjacent to Naked Silicon(II) Atom in Base Stabilized Aminosilylenes. Angew Chem Int Ed Engl 2024; 63:e202317416. [PMID: 38135667 DOI: 10.1002/anie.202317416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Aminosilylene, comprising reactive NH- and Si(II) sites next to each other, is an intriguing class of compounds due to its ability to show diverse reactivity. However, stabilizing the reactive NH- group next to the free Si(II) atom is challenging and has not yet been achieved. Herein, we report the first examples of base stabilized free aminosilylenes Ar*NHSi(PhC(Nt Bu)2 ) (1 a) and Mes*NHSi(PhC(Nt Bu)2 ) (1 b) (Ar*=2,6-dibenzhydryl-4-methylphenyl and Mes*=2,4,6-tri-tert-butylphenyl), tolerating a NH- group next to the naked Si(II) atom. Remarkably, 1 a and 1 b exhibited interesting differences in their reactivity upon heating. With 1 a, an intramolecular C(sp3 )-H activation of one of the benzhydryl methine hydrogen atoms to the Si(II) atom produced the five-membered cyclic silazane 2. However, with 1 b, a rare 1,2-hydrogen shift to the Si(II) atom afforded a silanimine 3, with a hydride ligand attached to an unsaturated silicon atom. Further, the coordination capabilities of 1 a were also tested with Ru(II) and Fe(0) precursors. Treatments of 1 a with [Ru(η6 -p-cymene)Cl2 ]2 led to the isolation of a η6 -arene tethered complex [RuCl2 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si-η6 -arene}] (4), whereas with the Fe(CO)5 precursor a Fe(0) complex [Fe(CO)4 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si}] (5) was obtained. Density functional theory (DFT) calculations were conducted to shed light on the structural, bonding, and energetic aspects in 1-5.
Collapse
Affiliation(s)
- Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xiaobai Wang
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Anirban Bhandari
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, UK
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| |
Collapse
|