1
|
Kaldybayeva AB, Yu VK, Durap F, Aydemir M, Tassibekov KS. Metal Complexes of Bispidine Derivatives: Achievements and Prospects for the Future. Molecules 2025; 30:1138. [PMID: 40076361 PMCID: PMC11902022 DOI: 10.3390/molecules30051138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Multidentate bispidine ligands, including tetra-, penta-, hexa-, hepta-, and octadentate variants, exhibit strong coordination tendencies due to their intrinsic rigidity, significant reorganization potential, and ability to efficiently encapsulate metal ions. These structural attributes profoundly influence the thermodynamic stability, metal ion selectivity, redox behavior, and spin-state configuration of the resulting complexes. Metal ions, in turn, serve as highly suitable candidates for coordination due to their remarkable kinetic inertness, rapid complex formation kinetics, and low redox potential. This review focuses on ligands incorporating the bispidine core (3,7-diazabicyclo[3.3.1]nonane) and provides an overview of advancements in the synthesis of metal complexes involving p-, d-, and f-block elements. Furthermore, the rationale behind the growing interest in bispidine-based complexes for applications in radiopharmaceuticals, medicinal chemistry, and organic synthesis is explored, particularly in the context of their potential for diagnostic and catalytic drug development.
Collapse
Affiliation(s)
- Altynay B. Kaldybayeva
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan;
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Valentina K. Yu
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Feyyaz Durap
- Department of Chemistry, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye; (F.D.); (M.A.)
- Science and Technolgy, Application and Research Center (DUBTAM), Dicle University, 21280 Diyarbakir, Türkiye
| | - Murat Aydemir
- Department of Chemistry, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye; (F.D.); (M.A.)
- Science and Technolgy, Application and Research Center (DUBTAM), Dicle University, 21280 Diyarbakir, Türkiye
| | - Khaidar S. Tassibekov
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan;
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| |
Collapse
|
2
|
Bhandary D, de Visser SP, Mukherjee G. Implications of non-native metal substitution in carbonic anhydrase - engineered enzymes and models. Chem Commun (Camb) 2025; 61:612-626. [PMID: 39655561 DOI: 10.1039/d4cc05003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The enzyme carbonic anhydrase has been intensely studied over decades as a means to understand the role of zinc in hydrating CO2. The naturally occurring enzyme has also been immobilized on distinct heterogeneous platforms, which results in a different hybrid class of catalysts that are useful for the adsorption and hydration of CO2. However, the reusability and robustness of such natural and immobilized systems are substantially affected when tested under industrial conditions, such as high temperature and high flow rate. This led to the generation of model systems in the form of metal-coordination complexes, metal-organic frameworks, metallo-peptide self-assembled supramolecules and nanomaterials that mimic the primary, and, to some extent, secondary coordination sphere of the active site of the natural carbonic anhydrase enzymes. Furthermore, the effects of zinc-substitution by other relevant transition metals in both the naturally occurring enzymes and model systems has been reported. It has been observed that some other transition metal ions in the active site of carbonic anhydrase and its models can also accomplish similar activity, established by various reaction probes and ideas. Herein, we present a comprehensive highlight about substituting zinc in the active site of the modified enzymes and its biomimetic model systems with non-native metal ions and review how they affect the structural orientation and reactivity towards CO2 hydration. In addition, the utility of artificially engineered carbonic anhydrases towards a number of non-natural reactions is also discussed.
Collapse
Affiliation(s)
- Dyuti Bhandary
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
3
|
Sahoo L, Panwar P, Sastri CV, de Visser SP. Unraveling Chlorite Oxidation Pathways in Equatorially Heteroatom-Substituted Nonheme Iron Complexes. ACS ORGANIC & INORGANIC AU 2024; 4:673-680. [PMID: 39649995 PMCID: PMC11621950 DOI: 10.1021/acsorginorgau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold. These complexes feature systematic substitutions at the equatorial position in the bispidine ligand framework where the pyridine group is replaced with NMe2, SMe, and OMe groups. The three iron(II)-bispidine complexes were subjected to studies in chlorite oxidation reactions as a model pathway for oxygen atom transfer. Chlorine oxyanions, which have the halide in an oxidation state ranging from +1 to +7, have numerous applications but can contaminate water bodies, and this demands urgent environmental remediation. Chlorite, a common precursor to chlorine dioxide, is of particular interest due to the superior antimicrobial activity of chlorine dioxide. Moreover, its generation leads to fewer harmful byproducts in water treatment. Here, we demonstrate that these complexes can produce chlorine dioxide from chlorite in acetate buffer at room temperature and pH 5.0, oxidizing chlorite through the in situ formation of high-valent iron(IV)-oxo intermediates. This study establishes how subtle changes in the coordination sphere around iron can influence the reactivity.
Collapse
Affiliation(s)
- Limashree Sahoo
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Payal Panwar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
- The
Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Josephy T, Kumar R, Bleher K, Röhs F, Glaser T, Rajaraman G, Comba P. Synthesis, Characterization, and Reactivity of Bispidine-Iron(IV)-Tosylimido Species. Inorg Chem 2024; 63:12109-12119. [PMID: 38875304 DOI: 10.1021/acs.inorgchem.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Reported are the synthesis and detailed studies of the iron(IV)-tosylimido complexes of two isomeric pentadentate bispidine ligands (bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives). This completes a series of five tosylimido complexes with comparable pentadentate amine/pyridine ligands, where the corresponding [(L)FeIV═O]2+ oxidants have been studied in detail. The characterization of the two new complexes in solution (UV-vis-NIR, Mössbauer, HR-ESI-MS) shows that these oxidants have an intermediate spin (S = 1) electronic ground state. The reactivities have been studied as oxidants in C-H activation at 1,3-cyclohexadiene and nitrogen atom transfer to thioanisole. For the latter substrate, the entire set of data for the five ligands and for both nitrogen and oxygen atom transfer is now available and the interesting observation is that oxygen atom transfer is, as expected, generally faster than nitrogen atom transfer, with the exception of the two ligands that have four and three pyridine groups oriented parallel to the Fe-O and Fe-N axes. A thorough DFT analysis indicates that this is due to steric effects in the case of the [(L)FeIV═O]2+ species, which are less important in the [(L)FeIV═NTs]2+ compounds due to partial electron transfer from the thioanisole substrate to the iron(IV)-tosylimido oxidant.
Collapse
Affiliation(s)
- Thomas Josephy
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Katharina Bleher
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Fridolin Röhs
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270,Heidelberg D-69120, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Kumar R, Maji A, Biswas B, Draksharapu A. Amphoteric reactivity of a putative Cu(II)- mCPBA intermediate. Dalton Trans 2024; 53:5401-5406. [PMID: 38426906 DOI: 10.1039/d3dt03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In copper-based enzymes, Cu-hydroperoxo/alkylperoxo species are proposed as key intermediates for their biological activity. A vast amount of literature is available on the functional and structural mimics of enzymatic systems with heme and non-heme ligand frameworks to stabilize high valent metal intermediates, mostly at low temperatures. Herein, we report a reaction between [CuI(NCCH3)4]+ and meta-chloroperoxybenzoic acid (mCPBA) in CH3CN that produces a putative CuII(mCPBA) species (1). 1 was characterized by UV/Vis, resonance Raman, and EPR spectroscopies. 1 can catalyze both electrophilic and nucleophilic reactions, demonstrating its amphoteric behavior. Additionally, 1 can also conduct electron transfer reactions with a weak reducing agent such as diacetyl ferrocene, making it one of the reactive copper-based intermediates. One of the most important aspects of the current work is the easy synthesis of a CuII(mCPBA) adduct with no complicated ligands for stabilization. Over time, 1 decays to form a CuII paddle wheel complex (2) and is found to be unreactive towards substrate oxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anweshika Maji
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bhargab Biswas
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|