1
|
Chiral chromatography method screening strategies: Past, present and future. J Chromatogr A 2021; 1638:461878. [PMID: 33477025 DOI: 10.1016/j.chroma.2021.461878] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/23/2022]
Abstract
Method screening is an integral part of chromatographic method development for the separation of racemates. Due to the highly complex retention mechanism of a chiral stationary-phase, it is often difficult, if not impossible, to device predefined method-development steps that can be successfully applied to a wide group of molecules. The standard approach is to evaluate or screen a series of stationary and mobile-phase combinations to increase the chances of detecting a suitable separation condition. Such a process is often the rate-limiting step for high-throughput analyses and purification workflows. To address the problem, several solutions and strategies have been proposed over the years for reduction of net method-screening time. Some of the strategies have been adopted in practice while others remained confined in the literature. The main objective of this review is to revisit, critically discuss and compile the solutions published over the last two decades. We expect that making the diverse set of solutions available in a single document will help assessing the adequacy of existing screening protocols in laboratories conducting chiral separation.
Collapse
|
2
|
Yu RB, Quirino JP. Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Gao J, Chen L, Wu Q, Li H, Dong S, Qin P, Yang F, Zhao L. Preparation and chromatographic performance of a multifunctional immobilized chiral stationary phase based on dialdehyde microcrystalline cellulose derivatives. Chirality 2019; 31:669-681. [PMID: 31318106 DOI: 10.1002/chir.23082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023]
Abstract
A novel high-performance liquid chromatography (HPLC) multifunctional immobilized chiral stationary phase was prepared by bonding dialdehyde microcrystalline cellulose to aminosilica via Schiff base reaction and then derivatized with 3,5-dimethylphenyl isocyanate. The HPLC multifunctional immobilized chiral stationary phase could not only achieve chiral separation but also achieve achiral separation. Chiral separation evaluation showed that 1-(1-naphthyl)ethanol and mandelonitrile got separation in normal phase (NP) mode. Ranolazine, benzoin ethyl ether, metalaxyl, and diclofop were successfully separated in reversed phase (RP) mode. Aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids were selected as analytes to investigate the achiral separation performance of the multifunctional immobilized chiral stationary phase in NP and RP modes. The achiral separation evaluation showed that six PAHs could get good separation within 10 minutes in NP mode. Four aromatic acids were well separated in RP mode. The retention mechanism of aromatic compounds on the stationary phase was discussed, founding that π-π interaction, π-π electron-donor-acceptor (EDA) interaction, and hydrogen bonding interaction played important roles during the achiral separation process. This multifunctional immobilized chiral stationary phase had the advantages of simple bonding steps, short reaction time, and no need for space arm.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lixiao Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Peng Qin
- Lanzhou Petrochemical Research Center, Lanzhou, China
| | - Fang Yang
- Lanzhou Petrochemical Research Center, Lanzhou, China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
4
|
Identification and structural characterization of hydrolytic degradation products of alvimopan by LC/QTOF/MS/MS and NMR studies. J Pharm Biomed Anal 2019; 165:399-409. [DOI: 10.1016/j.jpba.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
|
5
|
Liu H, Ding W. Enantiomeric separation of prothioconazole and prothioconazole-desthio on chiral stationary phases. Chirality 2019; 31:219-229. [PMID: 30633388 DOI: 10.1002/chir.23050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/09/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Prothioconazole is a type of broad-spectrum triazole thione fungicide developed by the Bayer Company. Prothioconazole-desthio is the main metabolite of prothioconazole in the environment. In our study, enantiomeric separation of prothioconazole and prothioconazole-desthio was performed on various chiral stationary phases (CSPs) by high-performance liquid chromatography (HPLC). It was found that polysaccharide CSPs showed better ability than brushing CSPs in enantiomeric separation. The successful chiral separation of prothioconazole could be achieved on self-made Chiralcel OD, commercialized Chiralcel OJ-H and Lux Cellulose-1. Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralpak AY-H, Chiralpak AZ-H, and Lux Cellulose-1 realized the baseline separation of prothioconazole-desthio enantiomers. Simultaneous enantiomeric separation of prothioconazole and prothioconazole-desthio was performed on Lux Cellulose-1 using acetonitrile (ACN) and water as mobile phase. In most cases, low temperature favored the separation of two compounds. The influence of the mobile phase ratio or type was deeply discussed. We obtained larger Rs and longer analysis time with a smaller proportion of isopropanol (IPA) or ethanol and more water content at the same temperature. The ratio of ACN and water had influences on the outflow orders of prothioconazole-desthio enantiomers. This work provides a new approach for chiral separation of prothioconazole and prothioconazole-desthio with a discussion of chiral separation mechanism on different CSPs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Wei Ding
- Department of Plant Protection, Northeast Agricultural University, Harbin, China
| |
Collapse
|