1
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
2
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
3
|
Sun Y, He Y, Liu S, Gao H, Pi Z, Song F, Liu Z, Liu S. Comparative pharmacokinetics of Ding-Zhi-Xiao-Wan preparation and its single herbs in rats by using a putative multiple-reaction monitoring UPLC-MS/MS method. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:362-374. [PMID: 32896044 DOI: 10.1002/pca.2982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The formula of Chinese medicine, Ding-Zhi-Xiao-Wan (DZXW), has the distinct feature of compatibility therapy, which is attributed to the interactions of multi-herbs. However, the quantification problem caused by the absence of pure reference standards is a bottleneck to clarify the compatibility advantages from the perspective of pharmacokinetics (PKs). OBJECTIVE This study aimed to develop a putative multiple-reaction monitor (PMRM) strategy for exploring the comparative PKs of DZXW and its single herbs. METHODS First, precursor ion and tandem mass spectrometry (MS/MS) chromatograms were obtained via ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight MS (UHPLC-Q-TOF-MS) under different collision energy (CE) values. Then, the two most abundance ions in the MS/MS chromatograms were chosen as product ions, and CE values were selected according to the abundance of the product ion peaks. Next, a PMRM strategy consisting of optimal MRM parameters was constructed. Finally, the established PMRM parameters were imported to UHPLC coupled with triple quadrupole MS (UHPLC-TQ-MS) for quantification. RESULTS The strategy was exemplified by the comparative PK study of DZXW and its single herbs. This strategy could extend the PK scopes of multi-components. The quantitative results displayed substantial variations in PK parameters between DZXW and its single herbs. CONCLUSION The PK parameters indicated that the DZXW formula could increase the exposure levels of most ingredients and reduce the maximum concentration (Cmax ) of Radix Polygala, indicating that herb compatibility could produce synergistic effects and diminish possible toxic effects. This study provides a viable orientation for the compatibility investigation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang He
- School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Shuxin Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
4
|
Sun Y, Feng G, Zheng Y, Liu S, Zhang Y, Pi Z, Song F, Liu Z. Putative multiple reaction monitoring strategy for the comparative pharmacokinetics of postoral administration Renshen-Yuanzhi compatibility through liquid chromatography-tandem mass spectrometry. J Ginseng Res 2020; 44:105-114. [PMID: 32148393 PMCID: PMC7033327 DOI: 10.1016/j.jgr.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Background Exploring the pharmacokinetic (PK) changes of various active components of single herbs and their combinations is necessary to elucidate the compatibility mechanism. However, the lack of chemical standards and low concentrations of multiple active ingredients in the biological matrix restrict PK studies. Methods A putative multiple reaction monitoring strategy based on liquid chromatography coupled with mass spectrometry (LC–MS) was developed to extend the PK scopes of quantification without resorting to the use of chemical standards. First, the compounds studied, including components with available reference standard (ARS) and components lacking reference standard (LRS), were preclassified to several groups according to their chemical structures. Herb decoctions were then subjected to ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis with appropriate collision energy (CE) in MS2 mode. Finally, multiple reaction monitoring transitions transformed from MS2 of ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used for ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry to obtain the mass responses of LRS components. LRS components quantification was further performed by developing an assistive group-dependent semiquantitative method. Results The developed method was exemplified by the comparative PK process of single herbs Radix Ginseng (RG), Radix Polygala (RP), and their combinations (RG–RP). Significant changes in PK parameters were observed before and after combination. Conclusion Results indicated that Traditional Chinese Medicine combinations can produce synergistic effects and diminish possible toxic effects, thereby reflecting the advantages of compatibility. The proposed strategy can solve the quantitative problem of LRS and extend the scopes of PK studies.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Guifang Feng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Yan Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
He Y, Wang Y, Liu S, Pi Z, Liu Z, Xing J, Zhou H. A metabolomic study of the urine of rats with Alzheimer's disease and the efficacy of Ding‐Zhi‐Xiao‐Wan on the afflicted rats. J Sep Sci 2020; 43:1458-1465. [DOI: 10.1002/jssc.201900944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yang He
- School of Pharmacy and Food ScienceZhuhai College of Jilin University Zhuhai P. R. China
| | - Yimin Wang
- School of Pharmacy and Food ScienceZhuhai College of Jilin University Zhuhai P. R. China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass SpectrometryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass SpectrometryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass SpectrometryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass SpectrometryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Hui Zhou
- School of Pharmacy and Food ScienceZhuhai College of Jilin University Zhuhai P. R. China
| |
Collapse
|
6
|
A target integration strategy for analyzing multidimensional chemical and metabolic substance groups of Ding-Zhi-Xiao-Wan prescription by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1608:460412. [DOI: 10.1016/j.chroma.2019.460412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023]
|
7
|
Chen J, Tan M, Zou L, Liu X, Chen S, Shi J, Chen C, Wang C, Mei Y. Qualitative and Quantitative Analysis of the Saponins in Panacis Japonici Rhizoma Using Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole-Time of Flight Tandem Mass Spectrometry and Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole-Linear Ion Trap Tandem Mass Spectrometry. Chem Pharm Bull (Tokyo) 2019; 67:839-848. [PMID: 31366833 DOI: 10.1248/cpb.c19-00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Panacis Japonici Rhizoma (PJR) contains various kinds of saponins, which possesses extensive pharmacological activities, but studies of comprehensive analysis of its saponins were limited. Thus, ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS) and ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UFLC-QTRAP-MS/MS) methods were established for the qualitative and quantitative analysis of the saponins in PJR, separately. Fifty three saponins in PJR were identified by UFLC-Triple TOF-MS/MS method, 23 saponins of which were unequivocally identified by reference substances. In addition, fragmentation pathways of different types of saponins were preliminarily deduced by fragmentation behavior of 53 saponins. Furthermore, the simultaneous determination of the contents of 13 saponins in PJR samples harvested at different times were analyzed by UFLC-QTRAP-MS/MS method. Furthermore, the quality of the samples was evaluated by grey relational analysis. This study might be beneficial to the quality assessment and control of PJR. Meanwhile, it might provide the basic information for confirming its optimal harvested period.
Collapse
Affiliation(s)
- Jiali Chen
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Mengxia Tan
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Shuyu Chen
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Jingjing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine
| | | | - Yuqi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine
| |
Collapse
|
8
|
Feng G, Zheng Y, Sun Y, Liu S, Pi Z, Song F, Liu Z. A targeted strategy for analyzing untargeted mass spectral data to identify lanostane–type triterpene acids in Poria cocos by integrating a scientific information system and liquid chromatography–tandem mass spectrometry combined with ion mobility spectrometry. Anal Chim Acta 2018; 1033:87-99. [DOI: 10.1016/j.aca.2018.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
9
|
Zheng Y, Feng G, Sun Y, Liu S, Pi Z, Song F, Liu Z. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J Pharm Biomed Anal 2018; 159:179-185. [DOI: 10.1016/j.jpba.2018.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 01/04/2023]
|
10
|
Feng G, Li S, Liu S, Song F, Pi Z, Liu Z. Targeted Screening Approach to Systematically Identify the Absorbed Effect Substances of Poria cocos in Vivo Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8319-8327. [PMID: 29985616 DOI: 10.1021/acs.jafc.8b02753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poria cocos are extensively used as nutritious food, dietary supplements, and oriental medicine in Asia. However, the effect substances are still not very clear. In this study, a targeted screening approach was developed to systematically identify absorbed constituents of Poria cocos in vivo using ultrahigh performance liquid chromatography tandem mass spectrometry combined with UNIFI software. First, incubation reactions in vitro with rat intestinal microflora and rat liver microsomes were conducted to sum up metabolic rules of main constituents. Second, the absorbed constituents in vivo were picked out and identified based on the results of metabolic study in vitro. Finally, the absorbed active constituents in the treatment of Alzheimer's disease were screened by targeted network pharmacology analysis. A total of 62 absorbed prototypes and 59 metabolites were identified and characterized in dosed plasma. Thirty potential active constituents were screened, and 86 drug-targets shared by absorbed constituents and Alzheimer's disease were discovered by targeted network pharmacology analysis. In general, this proposed targeted strategy comprehensively provides new insight for active ingredients of Poria cocos.
Collapse
Affiliation(s)
- Guifang Feng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Shizhe Li
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
11
|
Wang X, Liu J, Yang X, Zhang Q, Zhang Y, Li Q, Bi K. Development of a systematic strategy for the global identification and classification of the chemical constituents and metabolites of Kai-Xin-San based on liquid chromatography with quadrupole time-of-flight mass spectrometry combined with multiple data-p. J Sep Sci 2018; 41:2672-2680. [DOI: 10.1002/jssc.201800067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaotong Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Jing Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Xiaomei Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
12
|
Feng GF, Liu S, Pi ZF, Song FR, Liu ZQ. Studies on the chemical and intestinal metabolic profiles of Polygalae Radix by using UHPLC-IT-MS n and UHPLC-Q-TOF-MS method coupled with intestinal bacteria incubation model in vitro. J Pharm Biomed Anal 2018; 148:298-306. [DOI: 10.1016/j.jpba.2017.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
|
13
|
Chen W, Wu Y, Bi R, Liu S, Liu Z, Liu Z, Song F, Shi Y. Therapeutic Effects of Selaginella tamariscina
on the Model of Acute Gout with Hyperuricemia in Rats Based on Metabolomics Analysis. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weijia Chen
- School of Pharmaceutical Sciences; Jilin University; Changchun Jilin 130021 China
| | - Yi Wu
- School of Pharmaceutical Sciences; Jilin University; Changchun Jilin 130021 China
| | - Rongbing Bi
- School of Pharmaceutical Sciences; Jilin University; Changchun Jilin 130021 China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Zhongying Liu
- School of Pharmaceutical Sciences; Jilin University; Changchun Jilin 130021 China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Yi Shi
- School of Pharmaceutical Sciences; Jilin University; Changchun Jilin 130021 China
| |
Collapse
|
14
|
Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins. Sci Rep 2015; 5:17199. [PMID: 26598009 PMCID: PMC4657008 DOI: 10.1038/srep17199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.
Collapse
|
15
|
Yang X, Li X, Xu Y, Pi Z, Lin N, Liu Z, Song F. Mechanism of Incompatible Herb Pairs,Panax ginsengandVeratrum nigrumL.: Material Basis and Metabolic Profiles of Ginsenosides in Rat Intestinal Bacteria. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|