1
|
Karan S, Cho MY, Lee H, Park HS, Han EH, Song Y, Lee Y, Kim M, Cho JH, Sessler JL, Hong KS. Hypoxia-Responsive Luminescent CEST MRI Agent for In Vitro and In Vivo Tumor Detection and Imaging. J Med Chem 2022; 65:7106-7117. [PMID: 35580357 DOI: 10.1021/acs.jmedchem.1c01745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxia is a feature of most solid tumors and a key determinant of cancer growth and propagation. Sensing hypoxia effectively could lead to more favorable clinical outcomes. Here, we report a molecular antenna-based bimodal probe designed to exploit the complementary advantages of magnetic resonance (MR)- and optical-based imaging. Specifically, we describe the synthesis and evaluation of a dual-action probe (NO2-Eu) that permits hypoxia-activated chemical exchange saturation transfer (CEST) MR and optical imaging. In CT26 cells, this NO2-Eu probe not only provides an enhanced CEST MRI signal but also turns "on" the optical signal under hypoxic conditions. Time-dependent in vivo CEST imaging in a hypoxic CT26 tumor xenograft mouse model revealed probe-dependent tumor detection by CEST MRI contrast in the tumor area. We thus suggest that dual-action hypoxia probes, like that reported here, could have a role to play in solid tumor diagnosis and monitoring.
Collapse
Affiliation(s)
- Sanu Karan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youngkyu Song
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youlee Lee
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Mina Kim
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Science, London WC1N 3BG, United Kingdom
| | - Jee-Hyun Cho
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Sulfamide-substituted-BODIPY based fluorescence drugs: Synthesis, spectral characteristics, molecular docking, and bioactivity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Wang X, Qian S, Wang D, Wang C, Qin H, Peng L, Lu W, Zhang Y, Qing G. Self-assembly gel-based dynamic response system for specific recognition of N-acetylneuraminic acid. J Mater Chem B 2021; 9:4690-4699. [PMID: 34076032 DOI: 10.1039/d1tb00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialic acids located at the terminal end of glycans are densely attached to cell surfaces and play crucial and distinctive roles in a variety of physiological and pathological processes, such as neural development, cell-cell interactions, autoimmunity and cancers. However, due to the subtle structural differences of sialic acid species and the complicated composition of glycans, the precise recognition of sialylated glycans is difficult. Here, a fluorescent dynamic response system based on a pyrene-conjugated histidine (PyHis) supramolecular gel is proposed. Driven by π-π stacking and intermolecular hydrogen bonds, PyHis exhibits a strong self-assembly ability and forms stable gels. It is found that introduction of N-acetylneuraminic acid (a typical sialic acid) can prevent this self-assembly process, whereas other monosaccharides or sialic acid analogs have no significant effect on it. Interestingly, a sialylated glycan also has a remarkable inhibitory effect on the gel formation, which highlights the high selectivity of the gel dynamic response system. Analysis of the mechanism reveals that the sialic acid or sialylated glycan can interact closely with two PyHis molecules stacked together in the assemblies via hydrogen bonding interactions, thereby preventing the ordered accumulation of the gelators. It is worth noting that the high-efficiency sialic acid recognition effect is not observed at the single molecule level but at the supramolecular level, indicating the unique superiority of the supramolecular self-assembly system in biomolecular recognition and response. This work shows the promising prospects of using supramolecular gels in assembly engineering, regenerative medicine, tumour cell sorting and cancer diagnosis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China and Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Shengxu Qian
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lang Peng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| | - Wenqi Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| |
Collapse
|