1
|
Wu Y, Xu G, Shen Y, Wu X, Tang X, Han C, Chen Y, Yang F, Chen H, Li Y, Li Y. Stereoscopic Polymer Network for Developing Mechanically Robust Flexible Perovskite Solar Cells with an Efficiency Approaching 25. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403531. [PMID: 38733356 DOI: 10.1002/adma.202403531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Flexible perovskite solar cells (pero-SCs) have the potential to overturn the application scenario of silicon photovoltaic technology. However, their mechanical instability severely impedes their practical applicability, and the corresponding intrinsic degradation mechanism remains unclear. In this study, the degradation behavior of flexible pero-SCs is systematically analyzed under mechanical stress and it is observed that the structural failure first occurs in the polycrystal perovskite film, then extend to interfaces. To suppress the structural failure, pentaerythritol triacrylate, a crosslinked molecule with three stereoscopic crosslink sites, is employed to establish a 3D polymer network in both the interface and bulk perovskite. This network reduced the Young's modulus of the perovskite and simultaneously enhanced the interfacial toughness. As a result, the formation of cracks and delamination, which occur under a high mechanical stress, is significantly suppressed in the flexible pero-SC, which consequently retained 92% of its initial power conversion efficiency (PCE) after 20 000 bending cycles. Notably, the flexible device also shows a record PCE of 24.9% (certified 24.48%).
Collapse
Affiliation(s)
- Yeyong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guiying Xu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yunxiu Shen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaohua Tang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuanshuai Han
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yujin Chen
- Suzhou Sunflex New Energy Company Limited, Suzhou, 215100, China
| | - Fu Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Suzhou Sunflex New Energy Company Limited, Suzhou, 215100, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Zuo L, Li Z, Chen H. Ion Migration and Accumulation in Halide Perovskite Solar Cells
†. CHINESE J CHEM 2023. [DOI: 10.1002/cjoc.202200505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
- Zhejiang University‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 310014 China
| | - Zexin Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
3
|
Dai Z, Guo Q, Ding Y, Wang Z, Jiang N, Zhou E. Constructing D-π-A Type Polymers as Dopant-Free Hole Transport Materials for High-Performance CsPbI 2Br Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9784-9791. [PMID: 36757325 DOI: 10.1021/acsami.2c23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hole-transporting materials (HTMs) play a major role in efficient and stable perovskite solar cells (PSCs), especially for CsPbI2Br inorganic PSC. Among them, dopant-free conjugated polymers attract more attention because of the advantages of high hole mobility and high stability. However, the relationship between the polymer structure and the photovoltaic performance is rarely investigated. In this work, we choose three similar D-π-A-type polymers, where the D unit and π-bridge are fixed into benzodithiophene and thiophene, respectively. By changing the A units from classic benzodithiophene-4,8-dione and benzotriazole to quinoxaline, three polymers PBDB-T, J52, and PE61 are utilized as dopant-free HTMs for CsPbI2Br PSCs. The energy levels, hole mobility, and molecular stacking of the three HTMs, as well as charge transfer between CsPbI2Br/HTMs, are fully investigated. Finally, the device based on PE61 HTM obtains the champion power conversion efficiency of 16.72%, obviously higher than PBDB-T (15.13%) and J52 (15.52%). In addition, the device based on PE61 HTM displays the best long-term stability. Those results demonstrate that quinoxaline is also an effective A unit to construct D-π-A-type polymers as HTMs and improve the photovoltaic performance of PSCs.
Collapse
Affiliation(s)
- Zheng Dai
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qiang Guo
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanjia Ding
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhibin Wang
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Naizhong Jiang
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Erjun Zhou
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
4
|
Recent progress in perovskite solar cells: material science. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ji X, Feng K, Ma S, Wang J, Liao Q, Wang Z, Li B, Huang J, Sun H, Wang K, Guo X. Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83. ACS NANO 2022; 16:11902-11911. [PMID: 35866886 DOI: 10.1021/acsnano.2c01547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Charge carrier nonradiative recombination (NRR) caused by interface defects and nonoptimal energy level alignment is the primary factor restricting the performance improvement of perovskite solar cells (PSCs). Interfacial modification is a vital strategy to restrain NRR and enable high-performance PSCs. We report here two interfacial materials, PhI-TPA and BTZI-TPA, consisting of phthalimide and a 2,1,3-benzothiadiazole-5,6-dicarboxylicimide core, respectively. The difunctionalized BTZI-TPA with imide and thiadiazole shows higher hole mobility, better aligned energy levels, and stronger interaction with uncoordinated Pb2+ on the perovskite surface, suppressing NRR and carrier accumulation at the interface of perovskite/spiro-OMeTAD and yielding enhanced open-circuit voltage and fill factor. Consequently, the PSC based on BTZI-TPA delivers a high efficiency of 24.06% with an excellent fill factor of 83.10%, superior to that (21.47%) of the reference cell without an interfacial layer, and 21.45% efficiency for the device with a scaled-up area (1.00 cm2). These results underscore the potential of imide and thiadiazole groups in developing interfacial layers with strong passivation capability, effective charge transport property, and fine-tuned energetics for stable and efficient PSCs.
Collapse
Affiliation(s)
- Xiaofei Ji
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiaogan Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhaojin Wang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bolin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiachen Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Wang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Wu F, Yan K, Wu H, Guo Y, Shan S, Chen T, Fu W, Zuo L, Chen H. Polypropylene glycol‐modified anode interface for high‐performance perovskite solar cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fei Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Kangrong Yan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Haotian Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Yuanhang Guo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Shiqi Shan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
- Zhejiang University‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou 310014 P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|