1
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Wang QD, Ren JA, Cao XR, Zhou X, Yang JM, Shen ZL. Palladium-catalyzed α-arylation of sulfoxonium ylides with aryl fluorosulfates. Org Biomol Chem 2025; 23:1412-1417. [PMID: 39745244 DOI: 10.1039/d4ob01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates via C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification. In addition, the reaction could be readily scalable and applied in the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Jing-Ao Ren
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xu-Rong Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Zhang JW, Zhang Y, Huang Y. Organocatalytic Atroposelective Synthesis of Axially Chiral Indolyl Ketosulfoxonium Ylides. Angew Chem Int Ed Engl 2025; 64:e202413102. [PMID: 39105615 DOI: 10.1002/anie.202413102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Despite recent advancements in the catalytic generation of axial chirality, reports on non-biaryl atropisomers remain limited because of the stringent steric requirements necessary to establish effective rotational brakes. Herein, we present a novel class of monoaryl atropisomers, indolyl ketosulfoxonium ylides, and describe an organocatalytic protocol for their synthesis. We discovered that a chiral phosphoric acid (CPA) serves as an effective catalyst for the highly enantioselective iodination of ortho-aminophenylethynyl sulfoxonium ylides. Under the optimized reaction conditions, a strong preference for the intended iodination process over the competing protonation was observed. Subsequently, intramolecular amide cyclization enabled the formation of sterically congested indole fragments. Furthermore, the synthetic utility of the products was demonstrated by showcasing versatile transformations into other chiral scaffolds with complete retention of optical purity.
Collapse
Affiliation(s)
- Ji-Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
5
|
Davas D, Gopalakrishnan DK, Kumar S, Anmol, Karmakar T, Vaitla J. Visible Light-Promoted Regioselective Benzannulation of Vinyl Sulfoxonium Ylides with Ynoates. JACS AU 2024; 4:1073-1080. [PMID: 38559716 PMCID: PMC10976606 DOI: 10.1021/jacsau.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report a highly regioselective [4 + 2]-annulation of vinyl sulfoxonium ylides with ynoates under light-mediated conditions. The reaction proceeds through the new dienyl sulfoxonium ylide, which undergoes photolysis under blue light irradiation to give highly substituted naphthalene scaffolds. The method presented here operates at room temperature and does not require the addition of an external photosensitizer. The in situ-generated dienyl sulfoxonium ylide absorbs light and acts as a photosensitizer for the formation of arenes. The synthetic potential of these benzannulations was further illustrated by various synthetic transformations and a scale-up reaction. Moreover, control experiments and quantum chemical calculations reveal the mechanistic details of the developed reaction.
Collapse
Affiliation(s)
- Daksh
Singh Davas
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | | | - Sandeep Kumar
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Anmol
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Tarak Karmakar
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Janakiram Vaitla
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
6
|
Xu S, Zhang Q, Li Y, Luo C, Lai R, Guo L, Hai L, Lv G, Wu Y. Pathway to Construct α-Acyloxy Esters by B(C 6F 5) 3-Catalyzed O-H Insertion of Carboxylic Acids with Sulfoxonium Ylides. J Org Chem 2023; 88:15335-15349. [PMID: 37875403 DOI: 10.1021/acs.joc.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the first example of B(C6F5)3-catalyzed O-H insertion reaction of sulfoxonium ylides and carboxylic acids, achieving efficient construction of diester moieties under metal-free condition. This protocol is characterized by broad substrate tolerance, particularly for various phenylacetic acids, and good compatibility with water/air condition, which is superior to most other methods.
Collapse
Affiliation(s)
- Shuran Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
7
|
Xia S, Jian Y, Zhang L, Zhang C, An Y, Wang Y. Visible-light-promoted N-H functionalization of O-substituted hydroxamic acid with diazo esters. RSC Adv 2023; 13:14501-14505. [PMID: 37188246 PMCID: PMC10176041 DOI: 10.1039/d3ra02407e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Herein we report an N-H functionalization of O-substituted hydroxamic acid with diazo esters under blue LED irradiation conditions. The present transformations could be performed efficiently under mild conditions without use of catalyst, additive and N2 atmosphere. Interestingly, when THF and 1,4-dioxane were employed as the reaction solvents, an active oxonium ylide involved three-component reaction and an N-H insertion of carbene species into hydroxamate occurred, respectively.
Collapse
Affiliation(s)
- Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Liwen Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Cheng Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
8
|
Fu D, Xu J. Halide-promoted pyridinylation of α-acylmethylides with 2-halo-1-methylpyridinium iodides as reagents. Org Biomol Chem 2023; 21:1008-1013. [PMID: 36602179 DOI: 10.1039/d2ob02078e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Halide-promoted pyridinylation between α-acyl sulfonylmethylides and 2-halo-1-methylpyridinium iodides in a transition-metal-free protocol is described. A broad range of α-acyl sulfonylmethylides were transformed to bifunctionalized vinylsulfones in moderate to good yields, thereby providing a facile and practical approach for constructing methylthio- and pyridinoxyl-substituted vinylsulfones. The substrates can be extended to other acyl methylides. The reaction was shown to entail the formation of a C-O bond and consecutive breaking of C-S, C-Cl and C-N bonds.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
9
|
Guo W, Zhou Y, Xie H, Yue X, Jiang F, Huang H, Han Z, Sun J. Visible-light-induced organocatalytic enantioselective N-H insertion of α-diazoesters enabled by indirect free carbene capture. Chem Sci 2023; 14:843-848. [PMID: 36755716 PMCID: PMC9890670 DOI: 10.1039/d2sc05149d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
While asymmetric insertion of metal carbenes into H-X (X = C, N, O, etc.) bonds has been well-established, asymmetric control over free carbenes is challenging due to the presence of strong background reactions and lack of any anchor for a catalyst interaction. Here we have achieved the first photo-induced metal-free asymmetric H-X bond insertion of this type. With visible light used as a promoter and a chiral phosphoric acid used as a catalyst, α-diazoesters and aryl amines underwent smooth N-H bond insertion to form enantioenriched α-aminoesters with high efficiency and good enantioselectivity under mild conditions. Key to the success was the use of DMSO as an additive, which served to rapidly capture the highly reactive free carbene intermediate to form a domesticated sulfoxonium ylide.
Collapse
Affiliation(s)
- Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hongling Xie
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Hai Huang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zhengyu Han
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China .,Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR China.,Shenzhen Research Institute, HKUST No. 9 Yuexing 1st Rd Shenzhen 518057 China
| |
Collapse
|
10
|
Quan L, Xiao Y, Zhou A, Zhu X, Mao L, Wan J. Visible‐Light‐Promoted Tandem Oxyphosphorylation Etherification of α‐Diazoesters to Access Phosphoric Esters. ChemistrySelect 2023. [DOI: 10.1002/slct.202204778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li‐Xia Quan
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Yi Xiao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Anxi Zhou
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Xianhong Zhu
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Liu‐Liang Mao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 PR China
- International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 PR China
| |
Collapse
|
11
|
A metal-free and air-tolerable insertion polymerization using sulfoxonium ylides as monomers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Diazo compounds: Recent applications in synthetic organic chemistry and beyond. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
14
|
Li GN, Li HC, Lu Z, Yu B. CuCl-photocatalyzed C-H amination of benzoxazoles. Org Biomol Chem 2022; 20:5125-5128. [PMID: 35704388 DOI: 10.1039/d2ob00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct coupling of benzoxazoles and amines was realized by visible light irradiation and CuCl catalysis. Various aminated benzoxazoles were successfully synthesized under mild conditions with air as an oxidant.
Collapse
Affiliation(s)
- Guan-Nan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhan Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Caiuby CAD, Furniel LG, Burtoloso ACB. Asymmetric transformations from sulfoxonium ylides. Chem Sci 2022; 13:1192-1209. [PMID: 35222906 PMCID: PMC8809404 DOI: 10.1039/d1sc05708a] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfoxonium ylides are important surrogates for diazo compounds, and their use in industry as safer alternatives has been evaluated during recent years. Beyond the known classical transformations, these ylides have also been used in a surprising plethora of novel and intrinsic chemical reactions, especially in recent years. Bench stability and handling are also an advantage of this class of organosulfur molecules. Despite this, efficient asymmetric transformations, specifically catalytic enantioselective versions, have only recently been reported, and there are specific reasons for this. This perspective article covers this topic from the first studies up to the latest advances, giving personal perspectives and showing the main challenges in this area in the coming years.
Collapse
Affiliation(s)
- Clarice A D Caiuby
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Lucas G Furniel
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| |
Collapse
|
16
|
Zhou C, Huang X, Hu Y, Wu J, Zheng Y, Zhang X. Catalyst-free visible light-induced decarboxylative amination of glycine derivatives with azo compounds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05079f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible light-induced, catalyst-free decarboxylative amination of glycine derivatives with azo compounds was achieved to deliver functionalized aminals under mild reaction conditions.
Collapse
Affiliation(s)
- Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Xiaozhou Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Yaqing Hu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Junyan Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Ying Zheng
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
17
|
Shi T, Liu Y, Wang S, Lv Q, Yu B. Recyclable Carbon Nitride
Nanosheet‐Photocatalyzed
Aminomethylation of Imidazo[1,2‐
a
]pyridines in Green Solvent. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Shi
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Institute of Chemistry Henan Academy of Sciences Zhengzhou Henan 450002 China
| | - Yu‐Ting Liu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Shan‐Shan Wang
- Beijing Institute of Technology Analysis & Testing Center, Beijing Institute of Technology Beijing 100081 China
| | - Qi‐Yan Lv
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Bing Yu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
18
|
Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted β-Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Org Lett 2021; 23:9292-9296. [PMID: 34797682 DOI: 10.1021/acs.orglett.1c03662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two new visible-light-mediated strategies are described starting from aryldiazoacetates. The first approach describes their reaction with azides to afford the corresponding imines, and then reaction with aryldiazoketones produces alkyl 2-carboxylate-2,3,3-trisubstituted β-lactams. The second approach describes the reaction with sulfoxides to afford the corresponding sulfoxonium ylides, followed by reaction with aryldiazoketones to produce 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones. These protocols take advantage of the photolysis of aryldiazoacetates and the photochemically promoted Wolff rearrangement of aryldiazoketones.
Collapse
|
19
|
Li Q, Cai BG, Li L, Xuan J. Oxime Ether Synthesis through O-H Functionalization of Oximes with Diazo Esters under Blue LED Irradiation. Org Lett 2021; 23:6951-6955. [PMID: 34382794 DOI: 10.1021/acs.orglett.1c02555] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A green and sustainable oxime ether formation method via the visible-light-promoted O-H functionalization of oximes with diazo esters is described. The reaction occurs under very mild conditions (catalyst- and additive-free) with a high yield and a high functional group tolerance. When the reaction was performed with a cyclic ether as the solvent (e.g., THF, 1,4-dioxane, tetrahydropyran, ect.), an interesting photochemical three-component reaction product was obtained in good yields.
Collapse
Affiliation(s)
- Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
20
|
|
21
|
Cai BG, Li Q, Zhang Q, Li L, Xuan J. Synthesis of trisubstituted hydroxylamines by a visible light-promoted multicomponent reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01102b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A green and efficient route for the synthesis of trisubstituted hydroxylamines from β-keto ester, 2-nitrosopyridine and aryldiazoacetates has been reported. This multicomponent reaction occurred under mild conditions without catalysts or additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China
| |
Collapse
|
22
|
Cai B, Xuan J. Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Huang X, Wang R, Zhou C, Gao R, Zhang H, Zheng Y, Zhang X. Visible-light-induced, catalyst and additive-free cycloaddition of vinylcyclopropanes: access to sulfur-containing seven-membered heterocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo01007g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The first visible-light-induced, catalyst and additive-free protocol for [5 + 2] cycloadditions of vinylcyclopropanes (VCPs) has been achieved.
Collapse
Affiliation(s)
- Xiaozhou Huang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Rui Wang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Rong Gao
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Haowen Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Ying Zheng
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
24
|
Xie K, Jiang M, Chen X, Lü Q, Yu B. Application of α-Keto Acids in Metal-Free Photocatalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|