1
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
2
|
Khurshid S, Venkataramany AS, Montes M, Kipp JF, Roberts RD, Wein N, Rigo F, Wang PY, Cripe TP, Chandler DS. Employing splice-switching oligonucleotides and AAVrh74.U7 snRNA to target insulin receptor splicing and cancer hallmarks in osteosarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200908. [PMID: 39720325 PMCID: PMC11666956 DOI: 10.1016/j.omton.2024.200908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor (IR) to the proliferative IR-A isoform. Here, we leverage splice-switching oligonucleotides (SSOs) to mitigate IR splicing toward the IR-B isoform. We show that SSOs can modulate cancer cell hallmarks and anoikis-resistant growth. Furthermore, we engineered the SSO sequence in an U7 snRNA packaged in an adeno-associated virus (AAV) to test the feasibility of viral vector-mediated gene therapy delivery. We noted modest increases in IR-B isoform levels after virus transduction, which prompted us to investigate the role of combinatorial treatments with dalotuzumab, an anti-IGF-1R monoclonal antibody. After observing additive impacts on phosphoprotein phosphorylation and anoikis-resistant growth with the dalotuzumab and SSO combination, we treated OS cells with dalotuzumab and the AAVrh74.U7 snRNA IR virus, which significantly slowed OS cell proliferation. While these viruses require further optimization, we highlight the potential for SSO therapy and viral vector delivery, as it may offer new treatment avenues for OS patients and be translated to other cancers.
Collapse
Affiliation(s)
- Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Akila S. Venkataramany
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matias Montes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - John F. Kipp
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Nicolas Wein
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
4
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Assi A, Farhat M, Hachem MCR, Zalaquett Z, Aoun M, Daher M, Sebaaly A, Kourie HR. Tyrosine kinase inhibitors in osteosarcoma: Adapting treatment strategiesa. J Bone Oncol 2023; 43:100511. [PMID: 38058514 PMCID: PMC10696463 DOI: 10.1016/j.jbo.2023.100511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive primary bone malignancy that metastasizes rapidly. The standard of care has changed little over the previous four decades, and survival rates have plateaued. In this context, tyrosine kinase inhibitors (TKIs) emerge as potential treatments. A literature search was conducted to collect data related to receptor tyrosine kinase genetic alterations and expression in OS specimens. Gene amplification and protein expression of these receptors were linked to prognosis and tumor behavior. Relevant TKIs were evaluated as monotherapies and as parts of combination therapies. Certain TKIs, such as apatinib, regorafenib, and cabozantinib, present a potential therapeutic avenue for OS patients, especially when combined with chemotherapy. Producing long-lasting responses and enhancing quality of life remain key goals in OS treatment. To this effect, optimizing the use of TKIs by identifying biomarkers predictive of response and assessing promising TKIs in larger-scale trials to validate the efficacy and safety outcomes relative to these drugs reported in phase II clinical trials. To this effect, it is necessary to identify biomarkers predictive of response to TKIs in larger-scale trials and to validate the efficacy and safety of these drugs reported in phase II clinical trials.
Collapse
Affiliation(s)
- Ahmad Assi
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Mohamad Farhat
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | | | - Ziad Zalaquett
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Marven Aoun
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon
| | - Mohammad Daher
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon
- Orthopedics Department, Brown University, Providence, RI, USA
| | - Amer Sebaaly
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon
| | | |
Collapse
|
6
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04614-4. [PMID: 36807762 DOI: 10.1007/s00432-023-04614-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Osteosarcoma is a common primary malignant tumour of the bone that usually occurs in children and adolescents. It is characterised by difficult treatment, recurrence and metastasis, and poor prognosis. Currently, the treatment of osteosarcoma is mainly based on surgery and auxiliary chemotherapy. However, for recurrent and some primary osteosarcoma cases, owing to the rapid progression of disease and chemotherapy resistance, the effects of chemotherapy are poor. With the rapid development of tumour-targeted therapy, molecular-targeted therapy for osteosarcoma has shown promise. PURPOSE In this paper, we review the molecular mechanisms, related targets, and clinical applications of targeted osteosarcoma therapy. In doing this, we provide a summary of recent literature on the characteristics of targeted osteosarcoma therapy, the advantages of its clinical application, and development of targeted therapy in future. We aim to provide new insights into the treatment of osteosarcoma. CONCLUSION Targeted therapy shows potential in the treatment of osteosarcoma and may offer an important means of precise and personalised treatment in the future, but drug resistance and adverse effects may limit its application.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.,Graduate School, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - He Zhang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Jinxin Liu
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
8
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
9
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|