1
|
Wu Q, Zhang Y, Huang X, Ma T, Hong LE, Kochunov P, Chen S. A multivariate to multivariate approach for voxel-wise genome-wide association analysis. Stat Med 2024; 43:3862-3880. [PMID: 38922949 PMCID: PMC11986643 DOI: 10.1002/sim.10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
The joint analysis of imaging-genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel-wise genome-wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose a bi-clique graph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques and an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel-level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuan Zhang
- Department of Statistics, Ohio State University, Columbus, Ohio, USA
| | - Xiaoqi Huang
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L. Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
- The University of Maryland Institute for Health Computing, University of Maryland, North Bethesda, USA
| |
Collapse
|
2
|
Wajid B, Jamil M, Awan FG, Anwar F, Anwar A. aXonica: A support package for MRI based Neuroimaging. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:120-136. [PMID: 39416698 PMCID: PMC11446389 DOI: 10.1016/j.biotno.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024]
Abstract
Magnetic Resonance Imaging (MRI) assists in studying the nervous system. MRI scans undergo significant processing before presenting the final images to medical practitioners. These processes are executed with ease due to excellent software pipelines. However, establishing software workstations is non-trivial and requires researchers in life sciences to be comfortable in downloading, installing, and scripting software that is non-user-friendly and may lack basic GUI. As researchers struggle with these skills, there is a dire need to develop software packages that can automatically install software pipelines speeding up building software workstations and laboratories. Previous solutions include NeuroDebian, BIDS Apps, Flywheel, QMENTA, Boutiques, Brainlife and Neurodesk. Overall, all these solutions complement each other. NeuroDebian covers neuroscience and has a wider scope, providing only 51 tools for MRI. Whereas, BIDS Apps is committed to the BIDS format, covering only 45 software related to MRI. Boutiques is more flexible, facilitating its pipelines to be easily installed as separate containers, validated, published, and executed. Whereas, both Flywheel and Qmenta are propriety, leaving four for users looking for 'free for use' tools, i.e., NeuroDebian, Brainlife, Neurodesk, and BIDS Apps. This paper presents an extensive survey of 317 tools published in MRI-based neuroimaging in the last ten years, along with 'aXonica,' an MRI-based neuroimaging support package that is unbiased towards any formatting standards and provides 130 applications, more than that of NeuroDebian (51), BIDS App (45), Flywheel (70), and Neurodesk (85). Using a technology stack that employs GUI as the front-end and shell scripted back-end, aXonica provides (i) 130 tools that span the entire MRI-based neuroimaging analysis, and allow the user to (ii) select the software of their choice, (iii) automatically resolve individual dependencies and (iv) installs them. Hence, aXonica can serve as an important resource for researchers and teachers working in the field of MRI-based Neuroimaging to (a) develop software workstations, and/or (b) install newer tools in their existing workstations.
Collapse
Affiliation(s)
- Bilal Wajid
- Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
- Muhammad Ibn Musa Al-Khwarizmi Research & Development Division, Sabz-Qalam, Lahore, Pakistan
| | - Momina Jamil
- Muhammad Ibn Musa Al-Khwarizmi Research & Development Division, Sabz-Qalam, Lahore, Pakistan
| | - Fahim Gohar Awan
- Department of Electrical Engineering, University of Engineering & Technology, Lahore, Pakistan
| | - Faria Anwar
- Out Patient Department, Mayo Hospital, Lahore, Pakistan
| | - Ali Anwar
- Department of Computer Science, University of Minnesota, Minneapolis, USA
| |
Collapse
|
3
|
Cheek CL, Lindner P, Grigorenko EL. Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods. Behav Genet 2024; 54:233-251. [PMID: 38336922 DOI: 10.1007/s10519-024-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Brain-imaging-genetic analysis is an emerging field of research that aims at aggregating data from neuroimaging modalities, which characterize brain structure or function, and genetic data, which capture the structure and function of the genome, to explain or predict normal (or abnormal) brain performance. Brain-imaging-genetic studies offer great potential for understanding complex brain-related diseases/disorders of genetic etiology. Still, a combined brain-wide genome-wide analysis is difficult to perform as typical datasets fuse multiple modalities, each with high dimensionality, unique correlational landscapes, and often low statistical signal-to-noise ratios. In this review, we outline the progress in brain-imaging-genetic methodologies starting from early massive univariate to current deep learning approaches, highlighting each approach's strengths and weaknesses and elongating it with the field's development. We conclude by discussing selected remaining challenges and prospects for the field.
Collapse
Affiliation(s)
- Connor L Cheek
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA.
- Department of Physics, University of Houston, Houston, TX, USA.
| | - Peggy Lindner
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA
- Department of Information Science Technology, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA
- Department of Psychology, University of Houston, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
4
|
Liu Y, Chakraborty N, Qin ZS, Kundu S, The Alzheimer’s Disease Neuroimaging Initiative. Integrative Bayesian tensor regression for imaging genetics applications. Front Neurosci 2023; 17:1212218. [PMID: 37680967 PMCID: PMC10481528 DOI: 10.3389/fnins.2023.1212218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Identifying biomarkers for Alzheimer's disease with a goal of early detection is a fundamental problem in clinical research. Both medical imaging and genetics have contributed informative biomarkers in literature. To further improve the performance, recently, there is an increasing interest in developing analytic approaches that combine data across modalities such as imaging and genetics. However, there are limited methods in literature that are able to systematically combine high-dimensional voxel-level imaging and genetic data for accurate prediction of clinical outcomes of interest. Existing prediction models that integrate imaging and genetic features often use region level imaging summaries, and they typically do not consider the spatial configurations of the voxels in the image or incorporate the dependence between genes that may compromise prediction ability. We propose a novel integrative Bayesian scalar-on-image regression model for predicting cognitive outcomes based on high-dimensional spatially distributed voxel-level imaging data, along with correlated transcriptomic features. We account for the spatial dependencies in the imaging voxels via a tensor approach that also enables massive dimension reduction to address the curse of dimensionality, and models the dependencies between the transcriptomic features via a Graph-Laplacian prior. We implement this approach via an efficient Markov chain Monte Carlo (MCMC) computation strategy. We apply the proposed method to the analysis of longitudinal ADNI data for predicting cognitive scores at different visits by integrating voxel-level cortical thickness measurements derived from T1w-MRI scans and transcriptomics data. We illustrate that the proposed imaging transcriptomics approach has significant improvements in prediction compared to prediction using a subset of features from only one modality (imaging or genetics), as well as when using imaging and transcriptomics features but ignoring the inherent dependencies between the features. Our analysis is one of the first to conclusively demonstrate the advantages of prediction based on combining voxel-level cortical thickness measurements along with transcriptomics features, while accounting for inherent structural information.
Collapse
Affiliation(s)
- Yajie Liu
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nilanjana Chakraborty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
5
|
Abstract
The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.
Collapse
Affiliation(s)
- Hongtu Zhu
- Department of Biostatistics, Department of Statistics, Department of Genetics, and Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA;
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tengfei Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Beaulac C, Wu S, Gibson E, Miranda MF, Cao J, Rocha L, Beg MF, Nathoo FS. Neuroimaging feature extraction using a neural network classifier for imaging genetics. BMC Bioinformatics 2023; 24:271. [PMID: 37391692 DOI: 10.1186/s12859-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Dealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes. RESULTS We find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features. CONCLUSIONS The pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.
Collapse
Affiliation(s)
- Cédric Beaulac
- School of Engineering Science, Simon Fraser University, Burnaby, Canada.
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
| | - Sidi Wu
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Erin Gibson
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Michelle F Miranda
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Leno Rocha
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
7
|
Moon SW, Zhao L, Matloff W, Hobel S, Berger R, Kwon D, Kim J, Toga AW, Dinov ID, for the Alzheimer's Disease Neuroimaging Initiative. Brain structure and allelic associations in Alzheimer's disease. CNS Neurosci Ther 2023; 29:1034-1048. [PMID: 36575854 PMCID: PMC10018103 DOI: 10.1111/cns.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic. AIMS This paper examines late-onset dementia-related cognitive impairment utilizing neuroimaging-genetics biomarker associations. MATERIALS AND METHODS The participants, ages 65-85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD-associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample-major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta-GWAS study by Jansen and colleagues. RESULTS We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models. DISCUSSION In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM-NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC. CONCLUSION This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry, Research Institute of Medical ScienceKonkuk University School of MedicineSeoulKorea
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - William Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Sam Hobel
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ryan Berger
- Microbiology & ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daehong Kwon
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Jaebum Kim
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Arthur W. Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ivo D. Dinov
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
- Department of Health Behavior and Biological Sciences, Statistics Online Computational Resource (SOCR), Michigan Institute for Data Science (MIDAS)University of MichiganAnn ArborMichiganUSA
- Department of StatisticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
8
|
Zhao Y, Chang C, Zhang J, Zhang Z. Genetic underpinnings of brain structural connectome for young adults. J Am Stat Assoc 2023; 118:1473-1487. [PMID: 37982009 PMCID: PMC10655950 DOI: 10.1080/01621459.2022.2156349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
With distinct advantages in power over behavioral phenotypes, brain imaging traits have become emerging endophenotypes to dissect molecular contributions to behaviors and neuropsychiatric illnesses. Among different imaging features, brain structural connectivity (i.e., structural connectome) which summarizes the anatomical connections between different brain regions is one of the most cutting edge while under-investigated traits; and the genetic influence on the structural connectome variation remains highly elusive. Relying on a landmark imaging genetics study for young adults, we develop a biologically plausible brain network response shrinkage model to comprehensively characterize the relationship between high dimensional genetic variants and the structural connectome phenotype. Under a unified Bayesian framework, we accommodate the topology of brain network and biological architecture within the genome; and eventually establish a mechanistic mapping between genetic biomarkers and the associated brain sub-network units. An efficient expectation-maximization algorithm is developed to estimate the model and ensure computing feasibility. In the application to the Human Connectome Project Young Adult (HCP-YA) data, we establish the genetic underpinnings which are highly interpretable under functional annotation and brain tissue eQTL analysis, for the brain white matter tracts connecting the hippocampus and two cerebral hemispheres. We also show the superiority of our method in extensive simulations.
Collapse
Affiliation(s)
- Yize Zhao
- Department of Biostatistics, Yale University
| | - Changgee Chang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Jingwen Zhang
- Department of Biostatistics, Boston University, Boston, MA
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
| |
Collapse
|
9
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
10
|
Chen H, Caffo B, Stein-O’Brien G, Liu J, Langmead B, Colantuoni C, Xiao L. Two-stage linked component analysis for joint decomposition of multiple biologically related data sets. Biostatistics 2022; 23:1200-1217. [PMID: 35358296 PMCID: PMC9566367 DOI: 10.1093/biostatistics/kxac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Integrative analysis of multiple data sets has the potential of fully leveraging the vast amount of high throughput biological data being generated. In particular such analysis will be powerful in making inference from publicly available collections of genetic, transcriptomic and epigenetic data sets which are designed to study shared biological processes, but which vary in their target measurements, biological variation, unwanted noise, and batch variation. Thus, methods that enable the joint analysis of multiple data sets are needed to gain insights into shared biological processes that would otherwise be hidden by unwanted intra-data set variation. Here, we propose a method called two-stage linked component analysis (2s-LCA) to jointly decompose multiple biologically related experimental data sets with biological and technological relationships that can be structured into the decomposition. The consistency of the proposed method is established and its empirical performance is evaluated via simulation studies. We apply 2s-LCA to jointly analyze four data sets focused on human brain development and identify meaningful patterns of gene expression in human neurogenesis that have shared structure across these data sets.
Collapse
Affiliation(s)
- Huan Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Jinrui Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Carlo Colantuoni
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA, Department of Neurology, Johns Hopkins University, Baltimore, MD, 21287, USA and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Luo Xiao
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27607, USA
| |
Collapse
|
11
|
Image Genetic Analysis and Application Research Based on QRFPR and Other Neural Network-Related SNP Loci. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5861928. [PMID: 36017394 PMCID: PMC9398771 DOI: 10.1155/2022/5861928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
The development of neuroimaging technology and molecular genetics has produced a large amount of imaging genetics data, which has greatly promoted the study of complex mental diseases. However, because the feature dimension of the data is too high, the correlation measure assumes that the data obey Gaussian distribution, and traditional algorithms often cannot explain these two types of data well. This article mainly studies image genetics analysis and its application based on neural network. In this paper, based on the theory and application technology of neural network, the tree structure is established by prior knowledge, that is, each SNP site is used as a leaf node of the tree, and the LD block and genome formed by the linkage imbalance of multiple SNP sites are used as intermediate nodes. Then, the hierarchical relationship of features was introduced. On this basis, a sparse learning method based on tree structure guidance is used to select features from multiple features of multiple SNPs locus regression candidate brain regions. Finally, the identification of SNPs in feature selection is used to predict quantitative traits of brain regions. The distribution of the typical vector values obtained by the algorithm in the experimental data is basically consistent with the distribution of the median of the actual data, and the correlation coefficient obtained is closest to the actual correlation coefficient in the data set. The average correlation coefficient of the algorithm reaches 82.3%, which is about 4.2% higher than the control algorithm. Experimental results show that this method can not only significantly improve the regression performance but also detect the risk gene SNPs loci with spatial clustering features and functional interpretation significance. It is practical and effective to use it in clinical trials.
Collapse
|
12
|
Zhao Y, Li L, Alzheimer's Disease Neuroimaging Initiative. Multimodal data integration via mediation analysis with high-dimensional exposures and mediators. Hum Brain Mapp 2022; 43:2519-2533. [PMID: 35129252 PMCID: PMC9057105 DOI: 10.1002/hbm.25800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 12/28/2022] Open
Abstract
Motivated by an imaging proteomics study for Alzheimer's disease (AD), in this article, we propose a mediation analysis approach with high-dimensional exposures and high-dimensional mediators to integrate data collected from multiple platforms. The proposed method combines principal component analysis with penalized least squares estimation for a set of linear structural equation models. The former reduces the dimensionality and produces uncorrelated linear combinations of the exposure variables, whereas the latter achieves simultaneous path selection and effect estimation while allowing the mediators to be correlated. Applying the method to the AD data identifies numerous interesting protein peptides, brain regions, and protein-structure-memory paths, which are in accordance with and also supplement existing findings of AD research. Additional simulations further demonstrate the effective empirical performance of the method.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lexin Li
- Department of Biostatistics and EpidemiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | | |
Collapse
|
13
|
Schalkamp AK, Rahman N, Monzón-Sandoval J, Sandor C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022; 15:dmm049376. [PMID: 35647913 PMCID: PMC9178512 DOI: 10.1242/dmm.049376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge in medical genomics is to understand why individuals with the same disorder have different clinical symptoms and why those who carry the same mutation may be affected by different disorders. In every complex disorder, identifying the contribution of different genetic and non-genetic risk factors is a key obstacle to understanding disease mechanisms. Genetic studies rely on precise phenotypes and are unable to uncover the genetic contributions to a disorder when phenotypes are imprecise. To address this challenge, deeply phenotyped cohorts have been developed for which detailed, fine-grained data have been collected. These cohorts help us to investigate the underlying biological pathways and risk factors to identify treatment targets, and thus to advance precision medicine. The neurodegenerative disorder Parkinson's disease has a diverse phenotypical presentation and modest heritability, and its underlying disease mechanisms are still being debated. As such, considerable efforts have been made to develop deeply phenotyped cohorts for this disorder. Here, we focus on Parkinson's disease and explore how deep phenotyping can help address the challenges raised by genetic and phenotypic heterogeneity. We also discuss recent methods for data collection and computation, as well as methodological challenges that have to be overcome.
Collapse
Affiliation(s)
| | | | | | - Cynthia Sandor
- UK Dementia Research Institute at Cardiff University,Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
14
|
Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Chen T, Mandal A, Zhu H, Liu R. Imaging Genetic Based Mediation Analysis for Human Cognition. Front Neurosci 2022; 16:824069. [PMID: 35573299 PMCID: PMC9097855 DOI: 10.3389/fnins.2022.824069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
The brain connectome maps the structural and functional connectivity that forms an important neurobiological basis for the analysis of human cognitive traits while the genetic predisposition and our cognition ability are frequently found in close association. The issue of how genetic architecture and brain connectome causally affect human behaviors remains unknown. To seek for the potential causal relationship, in this paper, we carried out the causal pathway analysis from single nucleotide polymorphism (SNP) data to four common human cognitive traits, mediated by the brain connectome. Specifically, we selected 942 SNPs that are significantly associated with the brain connectome, and then estimated the direct and indirect effect on the human traits for each SNP. We found out that a majority of the selected SNPs have significant direct effects on human traits and discussed the trait-related brain regions and their implications.
Collapse
Affiliation(s)
- Tingan Chen
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Abhishek Mandal
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Gauran II, Xue G, Chen C, Ombao H, Yu Z. Ridge Penalization in High-Dimensional Testing With Applications to Imaging Genetics. Front Neurosci 2022; 16:836100. [PMID: 35401090 PMCID: PMC8987922 DOI: 10.3389/fnins.2022.836100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
High-dimensionality is ubiquitous in various scientific fields such as imaging genetics, where a deluge of functional and structural data on brain-relevant genetic polymorphisms are investigated. It is crucial to identify which genetic variations are consequential in identifying neurological features of brain connectivity compared to merely random noise. Statistical inference in high-dimensional settings poses multiple challenges involving analytical and computational complexity. A widely implemented strategy in addressing inference goals is penalized inference. In particular, the role of the ridge penalty in high-dimensional prediction and estimation has been actively studied in the past several years. This study focuses on ridge-penalized tests in high-dimensional hypothesis testing problems by proposing and examining a class of methods for choosing the optimal ridge penalty. We present our findings on strategies to improve the statistical power of ridge-penalized tests and what determines the optimal ridge penalty for hypothesis testing. The application of our work to an imaging genetics study and biological research will be presented.
Collapse
Affiliation(s)
- Iris Ivy Gauran
- Biostatistics Group, Computer, Electrical, Mathematical Sciences, and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gui Xue
- Center for Brain and Learning Science, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical, Mathematical Sciences, and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhaoxia Yu
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Dai X, Li L. Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis. J Am Stat Assoc 2022; 118:1796-1810. [PMID: 37771509 PMCID: PMC10530774 DOI: 10.1080/01621459.2021.2013851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Multimodal imaging has transformed neuroscience research. While it presents unprecedented opportunities, it also imposes serious challenges. Particularly, it is difficult to combine the merits of the interpretability attributed to a simple association model with the flexibility achieved by a highly adaptive nonlinear model. In this article, we propose an orthogonalized kernel debiased machine learning approach, which is built upon the Neyman orthogonality and a form of decomposition orthogonality, for multimodal data analysis. We target the setting that naturally arises in almost all multimodal studies, where there is a primary modality of interest, plus additional auxiliary modalities. We establish the root-N-consistency and asymptotic normality of the estimated primary parameter, the semi-parametric estimation efficiency, and the asymptotic validity of the confidence band of the predicted primary modality effect. Our proposal enjoys, to a good extent, both model interpretability and model flexibility. It is also considerably different from the existing statistical methods for multimodal data integration, as well as the orthogonality-based methods for high-dimensional inferences. We demonstrate the efficacy of our method through both simulations and an application to a multimodal neuroimaging study of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Lexin Li
- University of California at Berkeley
| |
Collapse
|
18
|
Vilor-Tejedor N, Garrido-Martín D, Rodriguez-Fernandez B, Lamballais S, Guigó R, Gispert JD. Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO! Comput Struct Biotechnol J 2021; 19:5800-5810. [PMID: 34765095 PMCID: PMC8567328 DOI: 10.1016/j.csbj.2021.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Imaging genetic studies aim to test how genetic information influences brain structure and function by combining neuroimaging-based brain features and genetic data from the same individual. Most studies focus on individual correlation and association tests between genetic variants and a single measurement of the brain. Despite the great success of univariate approaches, given the capacity of neuroimaging methods to provide a multiplicity of cerebral phenotypes, the development and application of multivariate methods become crucial. In this article, we review novel methods and strategies focused on the analysis of multiple phenotypes and genetic data. We also discuss relevant aspects of multi-trait modelling in the context of neuroimaging data.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | | | - Sander Lamballais
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
19
|
Zhang A, Fang J, Hu W, Calhoun VD, Wang YP. A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1350-1360. [PMID: 31689199 PMCID: PMC7756188 DOI: 10.1109/tcbb.2019.2950904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in imaging genetics make it possible to combine different types of data including medical images like functional magnetic resonance imaging (fMRI) and genetic data like single nucleotide polymorphisms (SNPs) for comprehensive diagnosis of mental disorders. Understanding complex interactions among these heterogeneous data may give rise to a new perspective, while at the same time demand statistical models for their integration. Various graphical models have been proposed for the study of interaction or association networks with continuous, binary, and count data as well as the mixture of them. However, limited efforts have been made for the multinomial case, for instance, SNP data. Our goal is therefore to fill the void by developing a graphical model for the integration of fMRI image and SNP data, which can provide deeper understanding of the unknown neurogenetic mechanism. In this article, we propose a latent Gaussian copula model for mixed data containing multinomial components. We assume that the discrete variable is obtained by discretizing a latent (unobserved) continuous variable and then create a semi-rank based estimator of the graph structure. The simulation results demonstrate that the proposed latent correlation has more steady and accurate performance than several existing methods in detecting graph structure. When applying to a real schizophrenia data consisting of SNP array and fMRI image collected by the Mind Clinical Imaging Consortium (MCIC), the proposed method reveals a set of distinct SNP-brain associations, which are verified to be biologically significant. The proposed model is statistically promising in handling mixed types of data including multinomial components, which can find widespread applications. To promote reproducible research, the R code is available at https://github.com/Aiying0512/LGCM.
Collapse
|
20
|
A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space. Neuroimage 2021; 238:118200. [PMID: 34118398 DOI: 10.1016/j.neuroimage.2021.118200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.
Collapse
|
21
|
Song Y, Ge S, Cao J, Wang L, Nathoo FS. A Bayesian spatial model for imaging genetics. Biometrics 2021; 78:742-753. [PMID: 33765325 DOI: 10.1111/biom.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study of the Alzheimer's Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic resonance imaging (MRI) and a set of 486 single nucleotide polymorphism (SNPs) from 33 Alzheimer's disease (AD) candidate genes obtained from 632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging phenotypes obtained from a neighborhood matrix for measures on the same hemisphere of the brain. Second, we allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a mean-field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new release of the R package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our application. Data used in the preparation of this article were obtained from the ADNI database (https://adni.loni.usc.edu).
Collapse
Affiliation(s)
- Yin Song
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | - Jiguo Cao
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Liangliang Wang
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| |
Collapse
|
22
|
Zhou J, Hu L, Jiang Y, Liu L. A Correlation Analysis between SNPs and ROIs of Alzheimer's Disease Based on Deep Learning. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8890513. [PMID: 33628827 PMCID: PMC7886593 DOI: 10.1155/2021/8890513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022]
Abstract
Motivation. At present, the research methods for image genetics of Alzheimer's disease based on machine learning are mainly divided into three steps: the first step is to preprocess the original image and gene information into digital signals that are easy to calculate; the second step is feature selection aiming at eliminating redundant signals and obtain representative features; and the third step is to build a learning model and predict the unknown data with regression or bivariate correlation analysis. This type of method requires manual extraction of feature single-nucleotide polymorphisms (SNPs), and the extraction process relies on empirical knowledge to a certain extent, such as linkage imbalance and gene function information in a group sparse model, which puts forward certain requirements for applicable scenarios and application personnel. To solve the problems of insufficient biological significance and large errors in the previous methods of association analysis and disease diagnosis, this paper presents a method of correlation analysis and disease diagnosis between SNP and region of interest (ROI) based on a deep learning model. It is a data-driven method, which has no obvious feature selection process. Results. The deep learning method adopted in this paper has no obvious feature extraction process relying on prior knowledge and model assumptions. From the results of correlation analysis between SNP and ROI, this method is complementary to other regression model methods in application scenarios. In order to improve the disease diagnosis performance of deep learning, we use the deep learning model to integrate SNP characteristics and ROI characteristics. The SNP feature, ROI feature, and SNP-ROI joint feature were input into the deep learning model and trained by cross-validation technique. The experimental results show that the SNP-ROI joint feature describes the information of the samples from different angles, which makes the diagnosis accuracy higher.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Linfeng Hu
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Yu Jiang
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Liyue Liu
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
23
|
Nie Y, Opoku E, Yasmin L, Song Y, Wang J, Wu S, Scarapicchia V, Gawryluk J, Wang L, Cao J, Nathoo FS. Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics. Stat Appl Genet Mol Biol 2020; 19:/j/sagmb.ahead-of-print/sagmb-2019-0058/sagmb-2019-0058.xml. [PMID: 32866136 DOI: 10.1515/sagmb-2019-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/27/2020] [Indexed: 11/15/2022]
Abstract
We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.
Collapse
Affiliation(s)
- Yunlong Nie
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Eugene Opoku
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Laila Yasmin
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Yin Song
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jie Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Sidi Wu
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Jodie Gawryluk
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
24
|
Capitoli G, Piga I, Galimberti S, Leni D, Pincelli AI, Garancini M, Clerici F, Mahajneh A, Brambilla V, Smith A, Magni F, Pagni F. MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot Study for the Characterization of Thyroid Nodules. Cancers (Basel) 2019; 11:cancers11091377. [PMID: 31527543 PMCID: PMC6769566 DOI: 10.3390/cancers11091377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
The present study applies for the first time as Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging (MSI) on real thyroid Fine Needle Aspirations (FNAs) to test its possible complementary role in routine cytology in the diagnosis of thyroid nodules. The primary aim is to evaluate the potential employment of MALDI-MSI in cytopathology, using challenging samples such as needle washes. Firstly, we designed a statistical model based on the analysis of Regions of Interest (ROIs), according to the morphological triage performed by the pathologist. Successively, the capability of the model to predict the classification of the FNAs was validated in a different group of patients on ROI and pixel-by-pixel approach. Results are very promising and highlight the possibility to introduce MALDI-MSI as a complementary tool for the diagnostic characterization of thyroid nodules.
Collapse
Affiliation(s)
- Giulia Capitoli
- Center of Biostatistics for Clinical Epidemiology, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Isabella Piga
- Proteomics and Metabolomics platform, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Davide Leni
- Department of radiology, San Gerardo Hospital, 20900 ASST Monza, Italy.
| | | | - Mattia Garancini
- Department of Surgery, San Gerardo Hospital, 20900 ASST Monza, Italy.
| | - Francesca Clerici
- Proteomics and Metabolomics platform, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Allia Mahajneh
- Proteomics and Metabolomics platform, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Virginia Brambilla
- Pathology, Department of Medicine and Surgery, University of Milano - Bicocca, San Gerardo Hospital, 20900 ASST Monza, Italy.
| | - Andrew Smith
- Proteomics and Metabolomics platform, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Fulvio Magni
- Proteomics and Metabolomics platform, Department of Medicine and Surgery, University of Milano - Bicocca, 20900 Vedano al Lambro, Italy.
| | - Fabio Pagni
- Pathology, Department of Medicine and Surgery, University of Milano - Bicocca, San Gerardo Hospital, 20900 ASST Monza, Italy.
| |
Collapse
|