1
|
Su Y, Zhu K, Wang J, Liu B, Chang Y, Chang D, You Y. Advancing Src kinase inhibition: From structural design to therapeutic innovation - A comprehensive review. Eur J Med Chem 2025; 287:117369. [PMID: 39952096 DOI: 10.1016/j.ejmech.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Src kinase, a non-receptor tyrosine kinase implicated in cellular signaling networks, plays a pivotal role in tumor progression and therapeutic resistance. Despite intensive research efforts spanning decades, no Src-selective kinase inhibitors have yet entered clinical use, highlighting the challenges in developing targeted therapeutics. Here we review recent advances in small-molecule Src inhibitor development, focusing on structural design strategies, binding mechanisms, and therapeutic applications. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and substrate-competitive inhibition that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly through exploitation of non-ATP binding pockets and covalent inhibition strategies. Integration of artificial intelligence, living organoid platforms, and targeted protein degradation technologies is accelerating inhibitor optimization. We discuss key challenges in Src inhibitor development, including the need for enhanced selectivity, reduced off-target effects, and improved resistance profiles. Our analysis reveals promising directions for future therapeutic development, emphasizing the importance of rational design principles guided by structural insights and emerging technologies. These findings provide a framework for developing next-generation Src inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Yifeng Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiahao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Boyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yue Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| |
Collapse
|
2
|
Zhang Q, Tang M. Synthesis of 5-Amino-1 H-pyrazole-4-carbonitriles from N-Tosylhydrazones and Its Application in the Preparation of Ibrutinib. J Org Chem 2025; 90:3805-3808. [PMID: 40040263 DOI: 10.1021/acs.joc.4c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
A facile method for preparing 5-amino-1H-pyrazole-4-carbonitriles was developed. The reaction exhibited compatibility to various substrates, and different 5-amino-1H-pyrazole-4-carbonitriles were prepared efficiently. Ibrutinib was prepared under palladium-free conditions in six steps in 32.7% overall yield.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Manda S, Lee NK, Oh DC, Lee J. Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src. Molecules 2020; 25:molecules25081948. [PMID: 32340152 PMCID: PMC7221895 DOI: 10.3390/molecules25081948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
A focused PROTAC library was developed to degrade both IGF-1R and Src proteins, which are associated with various cancers. PROTACs with IGF-1R and Src degradation potentials were synthesized by tethering different inhibitor warhead units and the E3 ligase (CRBN) recruiting-pomalidomide with various linkers. The designed PROTACs 12a-b inhibited the proliferation and migration of MCF7 and A549 cancer cells with low micromolar potency (1-5 μM) in various cellular assays.
Collapse
Affiliation(s)
- Sudhakar Manda
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Na Keum Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
- Correspondence: ; Tel.: +82-02-880-2471
| |
Collapse
|
4
|
Wang P, Luo Y, Zhu S, Lu D, Gong Y. Catalytic Azido‐Hydrazination of Alkenes Enabled by Visible Light: Mechanistic Studies and Synthetic Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Yunxuan Luo
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Songsong Zhu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Dengfu Lu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Yuefa Gong
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| |
Collapse
|
5
|
Rational drug-design approach supported with thermodynamic studies - a peptide leader for the efficient bi-substrate inhibitor of protein kinase CK2. Sci Rep 2019; 9:11018. [PMID: 31358826 PMCID: PMC6662822 DOI: 10.1038/s41598-019-47404-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).
Collapse
|
6
|
Ismail NS, Ali EM, Ibrahim DA, Serya RA, Abou El Ella DA. Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Biologically Driven Synthesis of Pyrazolo[3,4-d]pyrimidines As Protein Kinase Inhibitors: An Old Scaffold As a New Tool for Medicinal Chemistry and Chemical Biology Studies. Chem Rev 2014; 114:7189-238. [DOI: 10.1021/cr400270z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Silvia Schenone
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Marco Radi
- Dipartimento
di Farmacia, Università degli Studi di Parma Viale delle
Scienze, 27/A, 43124 Parma, Italy
| | - Francesca Musumeci
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro, 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Kumari S, Paliwal S, Chauhan R. Synthesis of Pyrazole Derivatives Possessing Anticancer Activity: Current Status. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.828757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Nasrolahi Shirazi A, Tiwari RK, Brown A, Mandal D, Sun G, Parang K. Cyclic peptides containing tryptophan and arginine as Src kinase inhibitors. Bioorg Med Chem Lett 2013; 23:3230-3234. [PMID: 23602444 PMCID: PMC3660729 DOI: 10.1016/j.bmcl.2013.03.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 11/27/2022]
Abstract
A number of cyclic and linear peptides containing various combinations of amino acids were evaluated for their Src kinase inhibitory potency. Among all the peptides, cyclic decapeptide C[RW]5 containing alternative arginine (R) and tryptophan (W) residues was found to be the most potent Src kinase inhibitor. C[RW]5 showed higher inhibitory activity (IC50=2.8 μM) than C[KW]5, L(KW)5, C[RW]4, and C[RW]3 with IC50 values of 46.9, 69.1, 21.5, and 25.0 μM, respectively, as determined in a fluorescence intensity-based assay. Thus, the cyclic nature, the presence of arginine, ring size, and the number of amino acids in the structure of the peptide were found to be critical in Src kinase inhibitory potency. The IC50 value of C[RW]5 was found to be 0.8 μM in a radioactive assay using [γ-(32)P]-ATP and polyE4Y as the substrate. C[RW]5 was a noncompetitive Src kinase inhibitor, showing approximately fourfold more selectivity towards Src than Abl.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rafinejad A, Fallah-Tafti A, Tiwari R, Shirazi AN, Mandal D, Shafiee A, Parang K, Foroumadi A, Akbarzadeh T. 4-Aryl-4H-naphthopyrans derivatives: one-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities. Daru 2012; 20:100. [PMID: 23351304 PMCID: PMC3599540 DOI: 10.1186/2008-2231-20-100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/21/2012] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A series of 2-amino-4-aryl-4H-benzo[h or f]chromene-3-carbonitrile derivatives were synthesized and evaluated for inhibition of Src kinase and cell proliferation in breast carcinoma (BT-20) cell lines. METHODS The one-pot, three-component reaction of α or β-naphthol, malonitrile and an aromatic aldehyde in the presence of diammonium hydrogen phosphate was afforded the corresponding 2-amino-4-aryl-4H-benzo[h or f]chromene-3-carbonitrile derivatives, All target compounds were evaluated for inhibition of Src kinase and cell proliferation in breast carcinoma (BT-20) cell lines. RESULTS Among all tested compounds, unsubstituted 4-phenyl analog 4a showed Src kinas inhibitory effect with IC50 value of 28.1 μM and was the most potent compound in this series. In general, the compounds were moderately active against BT-20. 3-Nitro-phenyl 4e and 3-pyridinyl 4h derivatives inhibited the cell proliferation of BT-20 cells by 33% and 31.5%, respectively, and found to be more potent compared to doxorubicin (25% inhibition of cell growth). CONCLUSION The data indicate that 4-aryl-4H-naphthopyrans scaffold has the potential to be optimized further for designing more potent Src kinase inhibitors and/or anticancer lead compounds.
Collapse
Affiliation(s)
- Ali Rafinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asal Fallah-Tafti
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
| | - Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
| | - Deendayal Mandal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
| | - Abbas Shafiee
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Saito R, Pruet JM, Manzano LA, Jasheway K, Monzingo AF, Wiget PA, Kamat I, Anslyn EV, Robertus JD. Peptide-conjugated pterins as inhibitors of ricin toxin A. J Med Chem 2012; 56:320-9. [PMID: 23214944 DOI: 10.1021/jm3016393] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several 7-peptide-substituted pterins were synthesized and tested as competitive active-site inhibitors of ricin toxin A (RTA). Focus began on dipeptide conjugates, and these results further guided the construction of several tripeptide conjugates. The binding of these compounds to RTA was studied via a luminescence-based kinetic assay, as well as through X-ray crystallography. Despite the relatively polar, solvent exposed active site, several hydrophobic interactions, most commonly π-interactions not predicted by modeling programs, were identified in all of the best-performing inhibitors. Nearly all of these compounds provide IC₅₀ values in the low micromolar range.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Wandelen LTM, van Ameijde J, Mady ASA, Wammes AEM, Bode A, Poot AJ, Ruijtenbeek R, Liskamp RMJ. Directed modulation of protein kinase C isozyme selectivity with bisubstrate-based inhibitors. ChemMedChem 2012; 7:2113-21. [PMID: 23139239 DOI: 10.1002/cmdc.201200349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/09/2012] [Indexed: 11/11/2022]
Abstract
Kinases present an attractive target for drug development, since they are involved in vital cellular processes and are implicated in a variety of diseases, such as cancer and diabetes. However, obtaining selectivity for a specific kinase over others is difficult since many current kinase inhibitors exclusively target the highly conserved kinase ATP binding domain. Previously, a microarray-based strategy to discover so-called bisubstrate-based inhibitors that target the more specific peptide binding groove in addition to the ATP binding site was described. One attractive feature of this strategy is the opportunity to tune the selectivity of these inhibitors by systematically varying components. In an extension to this previous work, this study explores the potential of this guided selectivity modulation, leading to a series of inhibitors with different selectivity profiles against highly homologous protein kinase C (PKC) isozymes. Of the inhibitors studied, most exhibited improved potency and selectivity compared with their constituent parts. Furthermore, the selectivity was found to be tunable either through modification of the pseudosubstrate peptide (peptide binding groove) or the ATP-competitive part (ATP binding site). In a number of cases, the selectivity of the construct could be predicted from the initial peptide substrate profiling experiment. Since this strategy is applicable to all kinase sets, it could be used to rapidly develop uniquely selective inhibitors.
Collapse
Affiliation(s)
- Loek T M van Wandelen
- Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rao VK, Chhikara BS, Tiwari R, Shirazi AN, Parang K, Kumar A. One-pot regioselective synthesis of tetrahydroindazolones and evaluation of their antiproliferative and Src kinase inhibitory activities. Bioorg Med Chem Lett 2012; 22:410-414. [PMID: 22119472 DOI: 10.1016/j.bmcl.2011.10.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022]
Abstract
A number of 2-substituted tetrahydroindazolones were synthesized by three-component condensation reaction of 1,3-diketones, substituted hydrazines, benzaldehydes, and Yb(OTf)(3) as a catalyst in [bmim][BF(4)] ionic liquid using a simple, efficient, and economical one-pot method. The synthesized tetrahydroindazolones were evaluated for inhibition of cell proliferation of human colon carcinoma (HT-29), human ovarian adenocarcinoma (SK-OV-3), and c-Src kinase activity. 3,4-Dichlorophenyl tetrahydroindazolone derivative (15) inhibited the cell proliferation of HT-29 and SK-OV-3 cells by 62% and 58%, respectively. 2,3-Diphenylsubstituted tetrahydroindazolone derivatives, inhibited the cell proliferation of HT-29 cells by 65-72% at a concentration of 50 μM. In general, the tetrahydroindazolones showed modest inhibition of c-Src kinase where 4-tertbutylphenyl- and 3,4-dichlorophenyl- derivatives showed the inhibition of c-Src kinase with IC(50) values of 35.1 and 50.7 μM, respectively.
Collapse
Affiliation(s)
- V Kameshwara Rao
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | | | | | | | | | | |
Collapse
|
14
|
Fallah-Tafti A, Foroumadi A, Tiwari R, Shirazi AN, Hangauer DG, Bu Y, Akbarzadeh T, Parang K, Shafiee A. Thiazolyl N-benzyl-substituted acetamide derivatives: synthesis, Src kinase inhibitory and anticancer activities. Eur J Med Chem 2011; 46:4853-4858. [PMID: 21852023 DOI: 10.1016/j.ejmech.2011.07.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/12/2011] [Accepted: 07/14/2011] [Indexed: 11/23/2022]
Abstract
KX2-391 (KX-01/Kinex Pharmaceuticals), N-benzyl-2-(5-(4-(2-morpholinoethoxy)phenyl)pyridin-2-yl)acetamide, is a highly selective Src substrate binding site inhibitor. To understand better the role of pyridine ring and N-benzylsubstitution in KX2-391 and establish the structure-activity relationship, a number of N-benzyl substituted (((2-morpholinoethoxy)phenyl)thiazol-4-yl)acetamide derivatives containing thiazole instead of pyridine were synthesized and evaluated for Src kinase inhibitory activities. The unsubstituted N-benzyl derivative (8a) showed the inhibition of c-Src kinase with GI(50) values of 1.34 μM and 2.30 μM in NIH3T3/c-Src527F and SYF/c-Src527F cells, respectively. All the synthesized compounds were evaluated for inhibition of cell proliferation of human colon carcinoma (HT-29), breast carcinoma (BT-20), and leukemia (CCRF-CEM) cells. 4-Fluorobenzylthiazolyl derivative 8b exhibited 64-71% inhibition in the cell proliferation of BT-20 and CCRF cells at concentration of 50 μM.
Collapse
Affiliation(s)
- Asal Fallah-Tafti
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rao VK, Chhikara BS, Shirazi AN, Tiwari R, Parang K, Kumar A. 3-substitued indoles: one-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities. Bioorg Med Chem Lett 2011; 21:3511-3514. [PMID: 21612925 DOI: 10.1016/j.bmcl.2011.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/02/2011] [Indexed: 11/22/2022]
Abstract
An efficient and economical method was developed for the synthesis of 3-substituted indoles by one-pot three-component coupling reaction of a substituted or unsubstituted benzaldehyde, N-methylaniline, and indole or N-methylindole using Yb(OTf)(3)-SiO(2) as a catalyst. All the synthesized compounds were evaluated for inhibition of cell proliferation of human colon carcinoma (HT-29), human ovarian adenocarcinoma (SK-OV-3), and c-Src kinase activity. The 4-methylphenyl (4o and 4p) and 4-methoxyphenyl (4q) indole derivatives inhibited the cell proliferation of SK-OV-3 and HT-29 cells by 70-77% at a concentration of 50 μM. The unsubstituted phenyl (4d) and 3-nitrophenyl (4l) derivatives showed the inhibition of c-Src kinase with IC(50) values of 50.6 and 58.3 μM, respectively.
Collapse
Affiliation(s)
- V Kameshwara Rao
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | | | | | | | | | | |
Collapse
|
16
|
Kumar A, Ahmad I, Chhikara BS, Tiwari R, Mandal D, Parang K. Synthesis of 3-phenylpyrazolopyrimidine-1,2,3-triazole conjugates and evaluation of their Src kinase inhibitory and anticancer activities. Bioorg Med Chem Lett 2011; 21:1342-1346. [PMID: 21300544 DOI: 10.1016/j.bmcl.2011.01.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/24/2022]
Abstract
A series of two classes of 3-phenylpyrazolopyrimidine-1,2,3-triazole conjugates were synthesized using click chemistry approach. All compounds were evaluated for inhibition of Src kinase and human ovarian adenocarcinoma (SK-Ov-3), breast carcinoma (MDA-MB-361), and colon adenocarcinoma (HT-29). Hexyl triazolyl-substituted 3-phenylpyrazolopyrimidine exhibited inhibition of Src kinase with an IC(50) value of 5.6 μM. 4-Methoxyphenyl triazolyl-substituted 3-phenylpyrazolopyrimidine inhibited the cell proliferation of HT-29 and SK-Ov-3 by 73% and 58%, respectively, at a concentration of 50 μM.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | | | | | | | | | | |
Collapse
|
17
|
Kumar D, Reddy VB, Kumar A, Mandal D, Tiwari R, Parang K. Click chemistry inspired one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory activity. Bioorg Med Chem Lett 2011; 21:449-452. [PMID: 21084189 DOI: 10.1016/j.bmcl.2010.10.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 11/29/2022]
Abstract
Two classes of 1,4-disubstituted 1,2,3-triazoles were synthesized using one-pot reaction of α-tosyloxy ketones/α-halo ketones, sodium azide, and terminal alkynes in the presence of aq PEG (1:1, v/v) using the click chemistry approach and evaluated for Src kinase inhibitory activity. Structure-activity relationship analysis demonstrated that insertion of C(6)H(5)- and 4-CH(3)C(6)H(4)- at position 4 for both classes and less bulkier aromatic group at position 1 in class 1 contribute critically to the modest Src inhibition activity (IC(50) = 32-43 μM) of 1,4-disubstituted 1,2,3-triazoles.
Collapse
Affiliation(s)
- Dalip Kumar
- Chemistry Group, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | | | | | | | | | | |
Collapse
|
18
|
Lavogina D, Enkvist E, Uri A. Bisubstrate inhibitors of protein kinases: from principle to practical applications. ChemMedChem 2010; 5:23-34. [PMID: 19774589 DOI: 10.1002/cmdc.200900252] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, Jakobi 2, 51014 Tartu (Estonia).
| | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Poot AJ, van Ameijde J, Slijper M, van den Berg A, Hilhorst R, Ruijtenbeek R, Rijkers DTS, Liskamp RMJ. Development of selective bisubstrate-based inhibitors against protein kinase C (PKC) isozymes by using dynamic peptide microarrays. Chembiochem 2009; 10:2042-51. [PMID: 19618415 DOI: 10.1002/cbic.200900199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinase inhibitors are increasingly important in drug development. Because the majority of current inhibitors target the conserved ATP-binding site, selectivity might become an important issue. This could be particularly problematic for the potential drug target protein kinase C (PKC), of which twelve isoforms with high homology exist in humans. A strategy to increase selectivity is to prepare bisubstrate-based inhibitors that target the more selective peptide-binding site in addition to the ATP-binding site. In this paper a generally applicable, rapid methodology is presented to discover such bisubstrate-based leads. Dynamic peptide microarrays were used to find peptide-binding site inhibitors. These were linked with chemoselective click chemistry to an ATP-binding site inhibitor, and this led to novel bisubstrate structures. The peptide microarrays were used to evaluate the resulting inhibitors. Thus, novel bisubstrate-based inhibitors were obtained that were both more potent and selective compared to their constituent parts. The most promising inhibitor has nanomolar affinity and selectivity towards PKCtheta amongst three isozymes.
Collapse
Affiliation(s)
- Alex J Poot
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA, Utrecht (The Netherlands)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tiwari R, Parang K. Protein conjugates of SH3-domain ligands and ATP-competitive inhibitors as bivalent inhibitors of protein kinases. Chembiochem 2009; 10:2445-2448. [PMID: 19731277 DOI: 10.1002/cbic.200900462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Indexed: 11/10/2022]
Affiliation(s)
- Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | |
Collapse
|