1
|
Chakraborty I, Rahamim G, Avinery R, Roichman Y, Beck R. Nanoparticle Mobility over a Surface as a Probe for Weak Transient Disordered Peptide-Peptide Interactions. NANO LETTERS 2019; 19:6524-6534. [PMID: 31456409 DOI: 10.1021/acs.nanolett.9b02764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Weak interactions form the core basis of a vast number of biological processes, in particular, those involving intrinsically disordered proteins. Here, we establish a new technique capable of probing these weak interactions between synthetic unfolded polypeptides using a convenient yet efficient, quantitative method based on single particle tracking of peptide-coated gold nanoparticles over peptide-coated surfaces. We demonstrate that our technique is sensitive enough to observe the influence of a single amino acid mutation on the transient peptide-peptide interactions. Furthermore, the effects of buffer salinity, which are expected to alter weak electrostatic interactions, are also readily detected and examined in detail. The method presented here has the potential to evaluate, in a high-throughput manner, weak interactions for a wide range of disordered proteins, polypeptides, and other biomolecules.
Collapse
Affiliation(s)
| | - Gil Rahamim
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Ram Avinery
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Yael Roichman
- School of Chemistry , Tel Aviv University , Tel Aviv 6997801 , Israel
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Roy Beck
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|
2
|
Cau Y, Fiorillo A, Mori M, Ilari A, Botta M, Lalle M. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions. J Chem Inf Model 2015; 55:2611-22. [PMID: 26551337 DOI: 10.1021/acs.jcim.5b00452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.
Collapse
Affiliation(s)
- Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy
| | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma , Piazzale A. Moro 5, 00185 Roma, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Viale Regina Elena 291, 00161 Roma, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology (IBPM), c/o Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza , P.le A. Moro 5, 00185 Roma, Italy
| | - Maurizo Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
3
|
Penumutchu SR, Chou RH, Yu C. Interaction between S100P and the anti-allergy drug cromolyn. Biochem Biophys Res Commun 2014; 454:404-9. [PMID: 25450399 DOI: 10.1016/j.bbrc.2014.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P-cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P-cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P-cromolyn complex.
Collapse
Affiliation(s)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 2014; 9:e103947. [PMID: 25084534 PMCID: PMC4118983 DOI: 10.1371/journal.pone.0103947] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023] Open
Abstract
The S100P protein is a member of the S100 family of calcium-binding proteins and possesses both intracellular and extracellular functions. Extracellular S100P binds to the cell surface receptor for advanced glycation end products (RAGE) and activates its downstream signaling cascade to meditate tumor growth, drug resistance and metastasis. Preventing the formation of this S100P-RAGE complex is an effective strategy to treat various disease conditions. Despite its importance, the detailed structural characterization of the S100P-RAGE complex has not yet been reported. In this study, we report that S100P preferentially binds to the V domain of RAGE. Furthermore, we characterized the interactions between the RAGE V domain and Ca2+-bound S100P using various biophysical techniques, including isothermal titration calorimetry (ITC), fluorescence spectroscopy, multidimensional NMR spectroscopy, functional assays and site-directed mutagenesis. The entropy-driven binding between the V domain of RAGE and Ca+2-bound S100P was found to lie in the micromolar range (Kd of ∼6 µM). NMR data-driven HADDOCK modeling revealed the putative sites that interact to yield a proposed heterotetrameric model of the S100P-RAGE V domain complex. Our study on the spatial structural information of the proposed protein-protein complex has pharmaceutical relevance and will significantly contribute toward drug development for the prevention of RAGE-related multifarious diseases.
Collapse
Affiliation(s)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
5
|
Yoshimura C, Miyafusa T, Tsumoto K. Identification of small-molecule inhibitors of the human S100B-p53 interaction and evaluation of their activity in human melanoma cells. Bioorg Med Chem 2013; 21:1109-15. [PMID: 23375094 DOI: 10.1016/j.bmc.2012.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 12/31/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
The interaction between human S100 calcium-binding protein B (S100B) and the tumor suppressor protein p53 is considered to be a possible therapeutic target for malignant melanoma. To identify potent inhibitors of this interaction, we screened a fragment library of compounds by means of a fluorescence-based competition assay involving the S100B-binding C-terminal peptide of p53. Using active compounds from the fragment library as query compounds, we constructed a focused library by means of two-dimensional similarity searching of a large database. This simple, unbiased method allowed us to identify several inhibitors of the S100B-p53 interaction, and we elucidated preliminary structure-activity relationships. One of the identified compounds had the potential to inhibit the S100B-p53 interaction in melanoma cells.
Collapse
Affiliation(s)
- Chihoko Yoshimura
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Staneva I, Huang Y, Liu Z, Wallin S. Binding of two intrinsically disordered peptides to a multi-specific protein: a combined Monte Carlo and molecular dynamics study. PLoS Comput Biol 2012; 8:e1002682. [PMID: 23028280 PMCID: PMC3441455 DOI: 10.1371/journal.pcbi.1002682] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/20/2012] [Indexed: 11/27/2022] Open
Abstract
The unique ability of intrinsically disordered proteins (IDPs) to fold upon binding to partner molecules makes them functionally well-suited for cellular communication networks. For example, the folding-binding of different IDP sequences onto the same surface of an ordered protein provides a mechanism for signaling in a many-to-one manner. Here, we study the molecular details of this signaling mechanism by applying both Molecular Dynamics and Monte Carlo methods to S100B, a calcium-modulated homodimeric protein, and two of its IDP targets, p53 and TRTK-12. Despite adopting somewhat different conformations in complex with S100B and showing no apparent sequence similarity, the two IDP targets associate in virtually the same manner. As free chains, both target sequences remain flexible and sample their respective bound, natively -helical states to a small extent. Association occurs through an intermediate state in the periphery of the S100B binding pocket, stabilized by nonnative interactions which are either hydrophobic or electrostatic in nature. Our results highlight the importance of overall physical properties of IDP segments, such as net charge or presence of strongly hydrophobic amino acids, for molecular recognition via coupled folding-binding. A substantial fraction of our proteins are believed to be partly or completely disordered, meaning that they contain regions that lack a stable folded structure under typical physiological conditions. This is a feature which plays a key role in their functions. For example, it allows them to have many structurally different binding partners which in turn permits the construction of the intricate signaling and regulatory networks necessary to sustain complex biological organisms such as ourselves. Whereas measuring the binding strengths of associations involving disordered proteins is routine, the binding process itself is today still not fully understood. We use two different computational models to study the interactions of a folded protein, S100B, which can bind various disordered peptides. In particular, we compare two peptides whose structures are known when in complex with S100B. Our results suggest that, although the peptides assume different structures in the bound state, there are similarities in how they associate with S100B. The possibility to computationally model the interplay between proteins is an important complement to experiments, by identifying crucial steps in the binding process. This is essential to understand, e.g., how single mutations sometimes lead to serious diseases.
Collapse
Affiliation(s)
- Iskra Staneva
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics group, Lund University, Lund, Sweden
| | - Yongqi Huang
- College of Chemistry and Molecular Engineering, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Stefan Wallin
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics group, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
7
|
Agamennone M, Cesari L, Lalli D, Turlizzi E, Del Conte R, Turano P, Mangani S, Padova A. Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 2010; 5:428-35. [PMID: 20077460 DOI: 10.1002/cmdc.200900393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
S100B contributes to cell proliferation by binding the C terminus of p53 and inhibiting its tumor suppressor function. The use of multiple computational approaches to screen fragment libraries targeting the human S100B-p53 interaction site is reported. This in silico screening led to the identification of 280 novel prospective ligands. NMR spectroscopic experiments revealed specific binding at the p53 interaction site for a set of these compounds and confirmed their potential for further rational optimization. The X-ray crystal structure determined for one of the binders revealed key intermolecular interactions, thus paving the way for structure-based ligand optimization.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Dipartimento di Scienze del Farmaco, Università "G. d'Annunzio", Via dei Vestini, 66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen Y, Pohlhaus DT. In silico docking and scoring of fragments. DRUG DISCOVERY TODAY. TECHNOLOGIES 2010; 7:e147-e202. [PMID: 24103766 DOI: 10.1016/j.ddtec.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
9
|
Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD, Toth EA, Weber DJ. Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 2009; 48:6202-12. [PMID: 19469484 DOI: 10.1021/bi9005754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.
Collapse
Affiliation(s)
- Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function, and Therapeutic Potential. ACTA ACUST UNITED AC 2009; 3:138-145. [PMID: 19890475 DOI: 10.2174/187231309788166460] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1 is a member of the S100 family of calcium-binding proteins. As with most S100 proteins, S100A1 undergoes a large conformational change upon binding calcium as necessary to interact with numerous protein targets. Targets of S100A1 include proteins involved in calcium signaling (ryanidine receptors 1 & 2, Serca2a, phopholamban), neurotransmitter release (synapsins I & II), cytoskeletal and filament associated proteins (CapZ, microtubules, intermediate filaments, tau, mocrofilaments, desmin, tubulin, F-actin, titin, and the glial fibrillary acidic protein GFAP), transcription factors and their regulators (e.g. myoD, p53), enzymes (e.g. aldolase, phosphoglucomutase, malate dehydrogenase, glycogen phosphorylase, photoreceptor guanyl cyclases, adenylate cyclases, glyceraldehydes-3-phosphate dehydrogenase, twitchin kinase, Ndr kinase, and F1 ATP synthase), and other Ca2+-activated proteins (annexins V & VI, S100B, S100A4, S100P, and other S100 proteins). There is also a growing interest in developing inhibitors of S100A1 since they may be beneficial for treating a variety of human diseases including neurological diseases, diabetes mellitus, heart failure, and several types of cancer. The absence of significant phenotypes in S100A1 knockout mice provides some early indication that an S100A1 antagonist could have minimal side effects in normal tissues. However, development of S100A1-mediated therapies is complicated by S100A1's unusual ability to function as both an intracellular signaling molecule and as a secreted protein. Additionally, many S100A1 protein targets have only recently been identified, and so fully characterizing both these S100A1-target complexes and their resulting functions is a necessary prerequisite.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, Maryland, 21201
| | | | | | | |
Collapse
|