1
|
Rothemund M, Bär A, Klatt F, Weidler S, Köhler L, Unverzagt C, Kuhn CD, Schobert R. N-Metallocenoylsphingosines as targeted ceramidase inhibitors: Syntheses and antitumoral effects. Bioorg Chem 2020; 97:103703. [PMID: 32143017 DOI: 10.1016/j.bioorg.2020.103703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Three N-metallocenoylsphingosines with variance in the central metal (Fe, Co, Ru), the charge (neutral or cationic), and the arene ligands (Cp2, Cp*Ph) were synthesized from serine and metallocene carboxylic acids as substrate-analogous inhibitors of human acid ceramidase (AC). Their inhibitory potential was examined using the recombinant full length ASAH1 enzyme, expressed and secreted from High Five insect cells, and the fluorescent substrate Rbm14-12. All complexes inhibited AC, most strongly so ruthenium(II) complex 13a. Some antitumoral effects of the complexes, such as the interference with the microtubular and F-actin cytoskeleton of cancer cells, were correlated to their AC-inhibition, whereas others, e.g. their cytotoxicity and their induction of caspase-3/-7 activity in cancer cells, were not. All complexes accumulated preferentially in the lysosomes of cancer cells like their target AC, arrested the cells in G1 phase of the cell cycle, and displayed cytotoxicity with mostly single-digit micromolar IC50 values while inducing cancer cell apoptosis.
Collapse
Affiliation(s)
- Matthias Rothemund
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Alexander Bär
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Felix Klatt
- Gene Regulation by Non-Coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Sascha Weidler
- Bioorganic Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Leonhard Köhler
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Claus-D Kuhn
- Gene Regulation by Non-Coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany
| | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
2
|
Park EY, Lee T, Oh YS, Lee JY, Shrestha J, Hong SW, Jin YJ, Jo G, Kim S, Hwang GT, Han DS, Baek DJ. Synthesis of dansyl labeled sphingosine kinase 1 inhibitor. Chem Phys Lipids 2018; 215:29-33. [PMID: 30044952 DOI: 10.1016/j.chemphyslip.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 02/04/2023]
Abstract
PF-543 is a non-sphingosine analogue with inhibitory effect against SK1, based on a Ki of 4.3 nM and 130-fold selectivity for SK1 over SK2. Since the development of PF-543, animal studies demonstrated its valuable role in multiple sclerosis, myocardial infarction, and colorectal cancer. We synthesized labeled PF-543 for biochemical studies involving SK1. Overall, the 8-step synthetic route used 3,5-dimethylphenol as the starting material. A docking study of SK1 and SK1 inhibitory activity confirmed the structural similarity between the synthetic dansyl-PF-543 and PF-543. We also provide fluorescence spectra of dansyl-PF-543.
Collapse
Affiliation(s)
- Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, South Korea
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, South Korea
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Jitendra Shrestha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, South Korea
| | - Seung Woo Hong
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Yun Ji Jin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - GeunHyung Jo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Gil Tae Hwang
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dong-Sul Han
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, South Korea.
| | - Dong Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, South Korea.
| |
Collapse
|
3
|
Li L, Dwivedi M, Erwin N, Möbitz S, Nussbaumer P, Winter R. Interaction of KRas4B protein with C6-ceramide containing lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1008-1014. [PMID: 29357287 DOI: 10.1016/j.bbamem.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Mridula Dwivedi
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany.
| |
Collapse
|
4
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Bach A, Pizzirani D, Realini N, Vozella V, Russo D, Penna I, Melzig L, Scarpelli R, Piomelli D. Benzoxazolone Carboxamides as Potent Acid Ceramidase Inhibitors: Synthesis and Structure-Activity Relationship (SAR) Studies. J Med Chem 2015; 58:9258-72. [PMID: 26560855 DOI: 10.1021/acs.jmedchem.5b01188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ceramides are lipid-derived intracellular messengers involved in the control of senescence, inflammation, and apoptosis. The cysteine amidase, acid ceramidase (AC), hydrolyzes these substances into sphingosine and fatty acid and, by doing so, regulates their signaling activity. AC inhibitors may be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic administration. The results expand our arsenal of AC inhibitors, thereby facilitating the use of these compounds as pharmacological tools and their potential development as drug leads.
Collapse
Affiliation(s)
- Anders Bach
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Daniela Pizzirani
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Natalia Realini
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Debora Russo
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Ilaria Penna
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Laurin Melzig
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy.,Departments of Anatomy and Neurobiology, Biological Chemistry, and Pharmacology, University of California , Irvine, California 92697-4625, United States
| |
Collapse
|
6
|
Pizzirani D, Bach A, Realini N, Armirotti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M, Ribeiro A, Piomelli D. Benzoxazolone Carboxamides: Potent and Systemically Active Inhibitors of Intracellular Acid Ceramidase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Pizzirani D, Bach A, Realini N, Armirotti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M, Ribeiro A, Piomelli D. Benzoxazolone carboxamides: potent and systemically active inhibitors of intracellular acid ceramidase. ANGEWANDTE CHEMIE (INTERNATIONAL ED. IN ENGLISH) 2014; 54:485-9. [PMID: 25395373 PMCID: PMC4502975 DOI: 10.1002/anie.201409042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/28/2022]
Abstract
The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide-mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high in vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Daniela Pizzirani
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ohtoyo M, Tamura M, Machinaga N, Muro F, Hashimoto R. Sphingosine 1-phosphate lyase inhibition by 2-acetyl-4-(tetrahydroxybutyl)imidazole (THI) under conditions of vitamin B6 deficiency. Mol Cell Biochem 2014; 400:125-33. [PMID: 25381637 DOI: 10.1007/s11010-014-2268-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
Abstract
Caramel food colorant 2-acetyl-4-(tetrahydroxybutyl)imidazole (THI) causes lymphopenia in animals through sphingosine 1-phosphate lyase (SPL) inhibition. However, this mechanism of action is partly still controversial because THI did not inhibit SPL in vitro either in cell-free or in cell-based systems. It is thought that the in vitro experimental conditions which have been used so far were not suitable for the evaluation of SPL inhibition, especially in case of cell-based experiments. We speculated that the key factor might be the coenzyme pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 (VB6), because media used in cell-based assays usually contain an excess amount of VB6 which leads to the activation of SPL. By the use of VB6-deficient culture medium, we could regulate apo- (without PLP) and holo- (with PLP) SPL enzyme in cultured cells, resulting in the successful detection of SPL inhibition by THI. Although the observed inhibitory effect was not as strong as that of 4-deoxypyridoxine (a VB6 analog SPL inhibitor), these findings may be useful for further understanding the mechanism of action of THI.
Collapse
Affiliation(s)
- Mamoru Ohtoyo
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| | | | | | | | | |
Collapse
|
9
|
Dai Z, Green TK. Synthesis of aromatic sphingosine analogues by diastereoselective amination of enantioenriched trans-γ,δ-unsaturated β-hydroxyesters. J Org Chem 2014; 79:7778-84. [PMID: 25046474 DOI: 10.1021/jo501533g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An effective route to N-Boc-protected aromatic sphingosine analogues is accomplished. The strategy is based on the diastereoselective amination of enantioenriched trans-γ,δ-unsaturated β-hydroxyesters to establish anti,N-Boc-α-hydrazino-β-hydroxyesters. Nonreductive E1cB elimination is essential for the successful N-N bond cleavage of hydrazine while preserving the trans double bond. Either the (3R,2S) and (3S,2R) enantiomer of N-Boc-protected sphingosine analogues has been synthesized in five steps with excellent optical purity with ∼99% ee and >99% de.
Collapse
Affiliation(s)
- Zhipeng Dai
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska , Fairbanks, Alaska 99775, United States
| | | |
Collapse
|
10
|
Lee YM, Lim C, Lee HS, Shin YK, Shin KO, Lee YM, Kim S. Synthesis and Biological Evaluation of a Polyyne-Containing Sphingoid Base Probe as a Chemical Tool. Bioconjug Chem 2013; 24:1324-31. [DOI: 10.1021/bc300684q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yun Mi Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Chaemin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Hun Seok Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Young Kee Shin
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Kyong-Oh Shin
- College
of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Korea
| | - Yong-Moon Lee
- College
of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| |
Collapse
|
11
|
Pizzirani D, Pagliuca C, Realini N, Branduardi D, Bottegoni G, Mor M, Bertozzi F, Scarpelli R, Piomelli D, Bandiera T. Discovery of a New Class of Highly Potent Inhibitors of Acid Ceramidase: Synthesis and Structure–Activity Relationship (SAR). J Med Chem 2013; 56:3518-30. [DOI: 10.1021/jm301879g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Pizzirani
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Chiara Pagliuca
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Natalia Realini
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Davide Branduardi
- Theoretical Molecular Biophysics
Group, Max Planck Institute for Biophysics, Max-von-Laue Strasse 3, 60438, Frankfurt am Main, Germany
| | - Giovanni Bottegoni
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle
Scienze 27/A, I-43124 Parma, Italy
| | - Fabio Bertozzi
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Department of Anatomy and Neurobiology, University of California—Irvine, Irvine, California
92697-4625, United States
| | - Tiziano Bandiera
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| |
Collapse
|
12
|
Combemale S, Santos C, Rodriguez F, Garcia V, Galaup C, Frongia C, Lobjois V, Levade T, Baudoin-Dehoux C, Ballereau S, Génisson Y. A biologically relevant ceramide fluorescent probe to assess the binding of potential ligands to the CERT transfer protein. RSC Adv 2013. [DOI: 10.1039/c3ra42395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Garnier-Amblard EC, Mays SG, Arrendale RF, Baillie MT, Bushnev AS, Culver DG, Evers TJ, Holt JJ, Howard RB, Liebeskind LS, Menaldino DS, Natchus MG, Petros JA, Ramaraju H, Reddy GP, Liotta DC. Novel synthesis and biological evaluation of enigmols as therapeutic agents for treating prostate cancer. ACS Med Chem Lett 2011; 2:438-43. [PMID: 24900327 DOI: 10.1021/ml2000164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/09/2011] [Indexed: 12/22/2022] Open
Abstract
Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind-Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.
Collapse
Affiliation(s)
- Ethel C. Garnier-Amblard
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Suzanne G. Mays
- School of Medicine, Department of Urology, Emory University, 1365 Clifton Road, NE, Atlanta, Georgia 30322, United States
| | - Richard F. Arrendale
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark T. Baillie
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anatoliy S. Bushnev
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Deborah G. Culver
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Taylor J. Evers
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jason J. Holt
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Randy B. Howard
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lanny S. Liebeskind
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David S. Menaldino
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michael G. Natchus
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John A. Petros
- School of Medicine, Department of Urology, Emory University, 1365 Clifton Road, NE, Atlanta, Georgia 30322, United States
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033, United States
| | - Harsha Ramaraju
- School of Medicine, Department of Urology, Emory University, 1365 Clifton Road, NE, Atlanta, Georgia 30322, United States
| | - G. Prabhakar Reddy
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Institute for Drug Discovery (EIDD), 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Bornancin F. Ceramide kinase: the first decade. Cell Signal 2010; 23:999-1008. [PMID: 21111813 DOI: 10.1016/j.cellsig.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.
Collapse
Affiliation(s)
- Frédéric Bornancin
- Novartis Institutes for BioMedical Research, CH-4056 Basle, Switzerland.
| |
Collapse
|
15
|
Sinkó B, Pálfi M, Béni S, Kökösi J, Takács-Novák K. Synthesis and characterization of long-chain tartaric acid diamides as novel ceramide-like compounds. Molecules 2010; 15:824-33. [PMID: 20335949 PMCID: PMC6256927 DOI: 10.3390/molecules15020824] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022] Open
Abstract
Ceramides play a crucial role in the barrier function of the skin as well as in transmembrane signaling. In this study long aliphatic chain tartaric acid diamides able to replace ceramides in an in vitro model of the stratum corneum lipid matrix due to their similar physico-chemical properties were synthesized from diacetoxysuccinic anhydride in four steps. Their pro-apoptotic effect on fibroblast cells was also investigated.
Collapse
Affiliation(s)
- Bálint Sinkó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - Melinda Pálfi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4., Budapest H-1089, Hungary; E-Mail: (M.P.)
| | - Szabolcs Béni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - József Kökösi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - Krisztina Takács-Novák
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-1-215-5241; Fax: +36-1-217-0891
| |
Collapse
|
16
|
Xia Z, Draper JM, Smith CD. Improved synthesis of a fluorogenic ceramidase substrate. Bioorg Med Chem 2010; 18:1003-9. [PMID: 20085856 PMCID: PMC2841511 DOI: 10.1016/j.bmc.2009.12.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/24/2009] [Accepted: 12/31/2009] [Indexed: 12/11/2022]
Abstract
Substantial interest has focused on the roles of sphingolipid metabolizing enzymes in a variety of hyperproliferative and inflammatory diseases. A key family of enzymes involved in these pathologies is the ceramidases. Ceramidases cleave the pro-apoptotic lipid ceramide into a long-chain fatty acid and sphingosine, which can then be further metabolized to the mitogenic and inflammatory lipid sphingosine 1-phosphate. Consequently, development of ceramidase inhibitors would provide useful pharmacologic probes for further studies of sphingolipid metabolism, as well as lead compounds for drug development. This effort has been hampered by the lack of in vitro and cellular ceramidase assays that are amenable to high-throughput screening. Recently, a fluorogenic ceramide analog has been described as a substrate for use in ceramidase assays. The synthesis of this compound has now been substantially improved in terms of both the required effort and the overall yield of the process. Key improvements include: reduction in number of required steps, use of a hydroboration reaction; incorporation of a Mitsunobu reaction; improved acylation by the addition of triethylamine; together providing a fourfold increase in the overall yield. In addition, it has been demonstrated that the ceramide analog can be used in high-throughput assays to identify ceramidase inhibitors. Overall, the improved efficiency in the preparation of this ceramidase substrate should accelerate discovery efforts relating to sphingolipid metabolism.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, MSC 140, Charleston, SC 29425, United States
| |
Collapse
|
17
|
Serra M, Saba JD. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. ACTA ACUST UNITED AC 2009; 50:349-62. [PMID: 19914275 DOI: 10.1016/j.advenzreg.2009.10.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
18
|
Rajan R, Mathew T, Buffa R, Bornancin F, Cavallari M, Nussbaumer P, De Libero G, Vasella A. Synthesis and Evaluation ofN-Acetyl-2-amino-2-deoxy-α-D-galactosyl 1-Thio-7-oxaceramide, a New Analogue ofα-D-Galactosyl Ceramide. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200800454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Kang JH, Garg H, Sigano DM, Francella N, Blumenthal R, Marquez VE. Ceramides: branched alkyl chains in the sphingolipid siblings of diacylglycerol improve biological potency. Bioorg Med Chem 2009; 17:1498-505. [PMID: 19171486 PMCID: PMC6980351 DOI: 10.1016/j.bmc.2009.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 01/11/2023]
Abstract
The synthesis of a small number of ceramide analogues containing a combination of linear and highly branched alkyl chains on either the d-sphingosine or the N-acyl core of the molecule is reported. Regardless of location, the presence of the branched chain improves potency relative to the positive control, C2 ceramide; however, the most potent compound (4) has the branched side chain as part of the d-sphingosine core. The induction of apoptosis by 4 in terms of Annexin V binding and DiOC(6) labeling was superior to that achieved with C2 ceramide.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| | - Himanshu Garg
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Dina M. Sigano
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| | - Nicholas Francella
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Robert Blumenthal
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| |
Collapse
|
20
|
Syntheses of sphingomyelin methylene, aza, and sulfur analogues by the versatile olefin cross-metathesis method. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Nussbaumer P. ChemInform Abstract: Medicinal Chemistry Aspects of Drug Targets in Sphingolipid Metabolism. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/chin.200825252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|