1
|
Bajgai J, Jun M, Oh JH, Lee JH. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025; 292:127954. [PMID: 40120511 DOI: 10.1016/j.talanta.2025.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynaecological malignancies, primarily because of its typically asymptomatic early stages, which complicates early detection. Therefore, developing sensitive and appropriate biomarkers for efficient diagnosis of OC is urgently needed. Aptamers, short sequences of single-stranded DNA or RNA molecules, have become crucial in tumor diagnosis because of their high affinity for specific molecules produced by tumors. This ability allows aptamers to accurately detect OC, thus providing better survival rates and a reduced disease burden. Biosensors that combine recognition molecules and nanomaterials are essential in various fields, including disease diagnosis and health management. Molecular-specific field-effect transistor (FET) biosensors are particularly promising due to their rapid response times, ease of miniaturization, and high sensitivity in detecting OC. Aptamers, which are known for their stability and structural tunability, are increasingly being used as biological recognition units in FET biosensors, offering selective and high-affinity binding to target molecules that are ideal for medical diagnostics. This review explores the recent advancements in biosensors for OC detection, including FET biosensors with aptamer-functionalized nanomaterials for CA125 and HE4. Furthermore, this review provides an overview of the structure and sensing principles of these advanced biosensors, preparation methods and functionalization strategies that enhance their performance. Additionally, notable progress and potential of biosensors, including aptamer-functionalized FET biosensors for OC diagnosis have been summarized, emphasising their role and clinical validation in advancing medical diagnostics and improving patient outcomes through enhanced detection capabilities.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
| |
Collapse
|
2
|
Sakimoto N, Imanaka H, Tomita-Sudo E, Akita T, Kawakami J. L-Histidine Modulates the Catalytic Activity and Conformational Changes of the HD3 Deoxyribozyme. Genes (Basel) 2024; 15:1481. [PMID: 39596681 PMCID: PMC11594175 DOI: 10.3390/genes15111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Riboswitches are functional nucleic acids that regulate biological processes by interacting with small molecules, such as metabolites, influencing gene expression. Artificial functional nucleic acids, including deoxyribozymes, have been developed through in vitro selection for various catalytic functions. In a previous study, an l-histidine-dependent deoxyribozyme was identified, exhibiting RNA cleavage activity in the presence of l-histidine resembling ribonuclease catalytic mechanisms. This study aims to clarify the role of l-histidine in the activity and structural formation of the l-histidine-dependent deoxyribozyme (HD), focusing on the binding properties and conformational changes of its derivative HD3. Methods: Conformational changes in HD3 were analyzed using circular dichroism (CD) under varying concentrations of l-histidine. Direct binding analysis was conducted using carbon-14 (14C)-labeled l-histidine and a liquid scintillation counter. The catalytic activity of HD3 in the presence of different l-histidine concentrations was measured. Results: The binding constant for l-histidine-induced conformational changes (Ka(CD)) was found to be 2.0 × 103 (M-1), whereas for catalytic activity (Ka(Rxn)) and scintillation counting (Ka(RI)), it was approximately 1.0 × 103 (M-1). Conclusions: l-Histidine plays an essential role in both the catalytic activity and structural formation of the HD3 deoxyribozyme. The consistent binding constants across different experimental methods highlight the significant contribution of l-histidine to the active folding of deoxyribozymes.
Collapse
Affiliation(s)
- Nae Sakimoto
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Hirofumi Imanaka
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Elisa Tomita-Sudo
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Tomoka Akita
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Junji Kawakami
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
3
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
4
|
Wang Y, Wang Z, Tong Y, Zhang D, Yun K, Yan J, Niu W. Aptamer-based fluorescent sensor for highly sensitive detection of methamphetamine. LUMINESCENCE 2024; 39:e4687. [PMID: 38332476 DOI: 10.1002/bio.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
The construction of a fluorescence aptamer sensor was achieved by employing the fundamental principle of fluorescence resonance energy transfer. By employing molecular modeling technologies to identify the binding site, the high-affinity aptamer APT-40nt was derived from the whole sequence and utilized on the graphene oxide (GO) fluorescent platform for the purpose of achieving a highly sensitive detection of methamphetamine (METH). The aptamer tagged with fluorescein (FAM) dye undergoes quenching in the presence of GO due to π-stacking interaction. With the addition of the target, the aptamer that has been tagged was detached from the GO surface, forming a stable complex with METH. This process resulted in fluorescence restoration of the system, and the degree of fluorescence restoration was proportional to METH concentration in the linear range of 1-50 and 50-200 nM. Notably, under optimized conditions, the detection limit of this aptasensor was as low as 0.78 nM, which meets the detection limit requirements of METH detection in saliva and urine in some countries and regions. Moreover, other common illicit drugs and metabolites had minimizing interference with the determination. The established aptasensor, therefore, has been successfully applied to detect METH in saliva and urine samples and exhibited satisfactory recoveries (87%-111%). This aptasensor has the advantages of low detection limit, excellent selectivity, ease of operation, and low cost, providing a promising strategy for on-site detection of METH in saliva and urine.
Collapse
Affiliation(s)
- Yandan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Zheyu Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Yishuo Tong
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Dan Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Weifen Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| |
Collapse
|
5
|
Liu MS, Zhong SS, Jiang S, Wang T, Zhang KH. Bibliometric analysis of aptamer-conjugated nanoparticles for diagnosis in the last two decades. NANOTECHNOLOGY 2023; 35:055102. [PMID: 37879319 DOI: 10.1088/1361-6528/ad06d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Objective.Aptamer-conjugated nanoparticles for diagnosis have recently gained increasing attention. Here, we performed a bibliometric analysis to provide an overview of this field over the past two decades.Methods. The terms 'aptamer, nanoparticles and diagnosis' were used to search for relevant original articles published in English from 2003 to 2022 in the Web of Science database. VOSviewer and CiteSpace software were employed to analyze the development process, knowledge structure, research hotspots, and potential trends in the field of aptamer-conjugated nanoparticles for diagnosis.Results. A total of 1076 original articles were retrieved, with a rapid increase in the annual output and citation. The journal 'Biosensors and Bioelectronics' has contributed the most in this field, and the most influential researcher, institution and country were Weihong Tan, the Chinese Academy of Sciences, China, respectively. Gold nanoparticles and quantum dots were the most used, but in the past three years, research hotspots focused on carbon dots and graphene quantum dots. Diagnostic directions primarily focused on cancer. The most used strategy was label-free electrochemical detection, but in the past two years, colorimetric analysis and fluorescence imaging emerged as hot topics.Conclusion.The bibliometric analysis reveals a rapid increase in the research on aptamer-conjugated nanoparticles for diagnosis, major contributors at the levels of journals, authors, institutions, and countries, and research preferences in diagnostic objects, nanoparticle types, and detection methods, as well as the evolution of research hotspots and future trends.
Collapse
Affiliation(s)
- Mao-Sheng Liu
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Si Zhong
- Department of Quality and Safety Management, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Song Jiang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
6
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
7
|
Chen J, Xu J, Xiang J, Wan T, Deng H, Li D. A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
|
9
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
10
|
A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods. Mikrochim Acta 2022; 189:103. [PMID: 35157153 PMCID: PMC8852957 DOI: 10.1007/s00604-022-05167-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
A new epidemic of acute respiratory viral pneumonia was discovered in central China at the end of 2019. The disease was given the name coronavirus disease 2019 (COVID-19), and the virus that caused this disease was known as severe acute respiratory syndrome coronavirus (SARS-CoV-2). So far, diagnostic methods have been focused on (a) human antibody detection, (b) viral antigen detection and (c) viral gene detection, the latter using RT-PCR being the most accurate approach. In this paper, we present a summary of the COVID-19 pandemic, clinical features and epidemiology and pathogenesis. Also, we focus on the recent advances in bioanalytical diagnostic methods based on various techniques for SARS-CoV-2 sensing that have recently been published (2020–2021). Furthermore, we present the mechanisms, advantages and disadvantages of the most common biosensors for COVID-19 detection, which include optical, electrochemical and piezoelectric biosensors as well as wearable and smart nanobiosensors, immunosensors, aptasensors and genosensors.
Collapse
|
11
|
Wang Y, Wang B, Xiong X, Deng S. A self-oriented beacon liquid crystal assay for kanamycin detection with AuNPs signal enhancement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:410-416. [PMID: 35006220 DOI: 10.1039/d1ay01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The authors report a self-oriented beacon liquid crystal (LC) biosensor for kanamycin (Kana) detection with gold nanoparticle (AuNPs) signal enhancement. In this study, an assay was proposed for Kana detection using the aptamer as a self-oriented beacon. Without an additional orientation agent, the Kana aptamer was used as a self-oriented beacon both as an orientation agent for the LCs and as a signal recognition probe for biological molecules. Gold nanoparticles are blended with desired concentrations of the target molecules, which can greatly improve the performance of the biosensor. In the presence of Kana, AuNPs-Kana-aptamer conjugates will form on the sensing interface of the biosensor, which can remarkably destroy the orientated arrangement of the LCs, resulting in changes in the corresponding polarized images of the LCs. The limit of Kana detection is as low as 0.1 pmol L-1. It is important to note that the self-oriented beacons are immobilized on the assembled film of the glass slides for the specific recognition of Kana, simultaneously allowing the homeotropic orientation of the LCs. This study also provides a mechanism for the self-orientation beacon and liquid crystal biosensing.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical Information Engineering, Jining Medical University, Rizhao 276826, Shandong, PR China.
| | - Bing Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, PR China
| | - Xingliang Xiong
- Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| | - Shixiong Deng
- Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Pheno-SELEX: Engineering Anti-Metastatic Aptamers through Targeting the Invasive Phenotype Using Systemic Evolution of Ligands by Exponential Enrichment. Bioengineering (Basel) 2021; 8:bioengineering8120212. [PMID: 34940365 PMCID: PMC8698736 DOI: 10.3390/bioengineering8120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Multiple methods (e.g., small molecules and antibodies) have been engineered to target specific proteins and signaling pathways in cancer. However, many mediators of the cancer phenotype are unknown and the ability to target these phenotypes would help mitigate cancer. Aptamers are small DNA or RNA molecules that are designed for therapeutic use. The design of aptamers to target cancers can be challenging. Accordingly, to engineer functionally anti-metastatic aptamers we used a modification of systemic evolution of ligands by exponential enrichment (SELEX) we call Pheno-SELEX to target a known phenotype of cancer metastasis, i.e., invasion. A highly invasive prostate cancer (PCa) cell line was established and used to identify aptamers that bound to it with high affinity as opposed to a less invasive variant to the cell line. The anti-invasive aptamer (AIA1) was found to inhibit in vitro invasion of the original highly invasive PCa cell line, as well as an additional PCa cell line and an osteosarcoma cell line. AIA1 also inhibited in vivo development of metastasis in both a PCa and osteosarcoma model of metastasis. These results indicate that Pheno-SELEX can be successfully used to identify aptamers without knowledge of underlying molecular targets. This study establishes a new paradigm for the identification of functional aptamers.
Collapse
|
13
|
|
14
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
15
|
Guo Y, Li K, Gao Y, Zhao S, Shi M, Li J, Liu Z, Wang Z, He L. CLEC3B Identified as a Potential Lung Cancer Biomarker in Serum by Aptamer‐Capture Technology. ChemistrySelect 2021. [DOI: 10.1002/slct.202100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanbin Guo
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Kun Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Yue Gao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Shuhua Zhao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Ming Shi
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Jian Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhiwei Liu
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhaoxia Wang
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Lei He
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| |
Collapse
|
16
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
17
|
Emrani S, Lamar M, Price CC, Baliga S, Wasserman V, Matusz E, Swenson R, Baliga G, Libon DJ. Assessing the capacity for mental manipulation in patients with statically-determined mild cognitive impairment using digital technology. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims: Prior research employing a standard backward digit span test has been successful in operationally defining neurocognitive constructs associated with the Fuster’s model of executive attention. The current research sought to test if similar behavior could be obtained using a cross-modal mental manipulation test.
Methods: Memory clinic patients were studied. Using Jak-Bondi criteria, 24 patients were classified with mild cognitive impairment (MCI), and 33 memory clinic patients did not meet criteria for MCI (i.e. non-MCI). All patients were assessed with the digital version of the WRAML-2 Symbolic Working Memory Test-Part 1, a cross-modal mental manipulation task where patients hear digits, but respond by touching digits from lowest to highest on an answer key. Only 4 and 5-span trials were analyzed. Using an iPad, all test stimuli were played; and, all responses were obtained with a touch key. Only correct trials were analyzed. Average time to complete trials and latency for each digit was recorded.
Results: Groups did not differ when average time to complete 4-span trials was calculated. MCI patients displayed slower latency, or required more time to re-order the 1st and 3rd digits. Regression analyses, primarily involving initial and latter response latencies, were associated with better, but different underlying neuropsychological abilities. Almost no 5-span analyses were significant.
Conclusions: This cross-modal test paradigm found no difference for total average time. MCI patients generated slower 1st and 3rd response latency, suggesting differences in time allocation to achieve correct serial order recall. Moreover, different neuropsychological abilities were associated with different time-based test components. These data extend prior findings using a standard backward digit span test. Differences in time epochs are consistent with constructs underlying the model of executive attention and help explain mental manipulation deficits in MCI. These latency measures could constitute neurocognitive biomarkers that track emergent disease.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA
| | - Satya Baliga
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victor Wasserman
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Emily Matusz
- 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Rod Swenson
- Department Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Grand Fork, Fargo, ND 58103, USA
| | - Ganesh Baliga
- Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA
| | - David J. Libon
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
18
|
Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: rivals or allies in cancer targeted therapy? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:107-121. [PMID: 36046085 PMCID: PMC9400792 DOI: 10.37349/etat.2021.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The goal of an efficacious cancer therapy is to specifically target diseased cells at high accuracy while sparing normal, healthy cells. Over the past three decades, immunotherapy, based on the use of monoclonal antibodies (mAbs) directed against tumor-associated antigens, to inhibit their oncogenic function, or against immune checkpoints, to modulate specific T cell responses against cancer, has proven to be an important strategy for cancer therapy. Nevertheless, the number of mAbs approved for clinical use is still limited because of significant drawbacks to their applicability. Oligonucleotide aptamers, similarly to antibodies, form high-affinity bonds with their specific protein targets, thus representing an effective tool for active cancer targeting. Compared to antibodies, aptamers’ use as therapeutic agents benefits from their low size, low/no immunogenicity, simple synthesis and design flexibility for improving efficacy and stability. This review intends to highlight recently emerged applications of aptamers as recognition elements, from biomarker discovery to targeted drug delivery and targeted treatment, showing aptamers’ potential to work in conjunction with antibodies for attacking cancer from multiple flanks.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
19
|
Chen J, Xu J, Wan T, Deng H, Li D. High-Sensitive Detection of Small-Cell Lung Cancer Cells Based on Terminal Deoxynucleotidyl Transferase-Mediated Extension Polymerization Aptamer Probe. ACS Biomater Sci Eng 2021; 7:1169-1180. [PMID: 33541073 DOI: 10.1021/acsbiomaterials.0c01633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-cell lung cancer (SCLC) is characterized by early metastasis and high invasiveness, poor prognosis, and a low five-year survival rate. Therefore, the development of the effective detection of SCLC cells and imaging methods has potential significance for the prognosis and treatment of SCLC. We designed a terminal deoxynucleotidyl transferase (TdT)-mediated extension polymerization aptamer probe (denoted as TEPAP). Aptamer HCC03 was used as an element of recognizing SCLC, and it was extended as a long poly(T) tail at the 3'-hydroxyl terminus by TdT and then hybridized with short poly(A) labeled with 6-carboxyfluorescein (FAM) to construct TEPAP for the high-sensitivity detection of SCLC. The results showed that the probe could specifically recognize NCI-H446 cells. Compared with HCC03 labeled with FAM, TEPAP has demonstrated a higher fluorescence signal in recognizing NCI-H446 cells, and the fluorescence intensity of TEPAP recognizing the target cells was 10 times higher than that of nontarget cells. Flow cytometric analysis showed that the detection limit of this method was as low as 17 NCI-H446 cells in 200 μL of binding buffer. In the application of clinical cytology cell blocks, the sensitivity, specificity, and accuracy of TEPAP were 89.74, 94.44, and 91.23%, respectively. The high sensitivity and specificity of TEPAP in the application of clinical samples show that the proposed probe has great potential in the diagnosis of SCLC.
Collapse
Affiliation(s)
- Jialing Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Wan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongli Deng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Luo Y, Jin Z, Wang J, Ding P, Pei R. The isolation of a DNA aptamer to develop a fluorescent aptasensor for the thiamethoxam pesticide. Analyst 2021; 146:1986-1995. [PMID: 33502393 DOI: 10.1039/d0an01967d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aptamers, which are called chemical antibodies for their high affinity and specificity to targets, have great potential as analytical tools to detect pesticides. In this work, a DNA aptamer for thiamethoxam was isolated by an improved SELEX (systematic evolution of ligands by exponential enrichment) strategy, in which the ssDNA library was fixed on streptavidin-agarose beads through a short biotin labeled complementary strand. After 13 rounds of selection, the random ssDNA pool was successfully enriched. Three sequences were chosen as aptamer candidates through sequencing and analysis and were transformed into fluorescent probes to evaluate their interactions with thiamethoxam. A fluorescent turn-on aptasensor for thiamethoxam based on the best aptamer (FAM-Thi13) and a short quenching strand were further designed and showed a quantitative linear range from 10 to 1000 nM with a detection limit of 1.23 nM for thiamethoxam. Molecular docking and molecular dynamics were used to investigate the binding site of the main probe of the aptasensor (FAM-Thi13) and thiamethoxam. Satisfactory results were also obtained in quantifying thiamethoxam in environmental water samples by the developed fluorescent aptasensor.
Collapse
Affiliation(s)
- Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | | | | | | | | |
Collapse
|
21
|
Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem 2020; 412:7851-7860. [PMID: 32935151 DOI: 10.1007/s00216-020-02916-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
In the present study, a sensitive electrochemical aptamer-based biosensing strategy for human non-small cell lung cancer (NSCLC) detection was proposed using nanofiber-modified disposable pencil graphite electrodes (PGEs). The composite nanofiber was comprised of polyacrylonitrile (PAN) and polypyrrole (PPy) polymers, and fabrication of the nanofibers was accomplished using electrospinning process onto PGEs. Development of the nanofibers was confirmed using scanning electron microscopy (SEM). The high-affinity 5'-aminohexyl-linked aptamer was immobilized onto a PAN/PPy composite nanofiber-modified sensor surface via covalent bonding strategy. After incubation with NSCLC living cells (A549 cell line) at 37.5 °C, the recognition between aptamer and target cells was monitored by electrochemical impedance spectroscopy (EIS). The selectivity of the aptasensor was evaluated using nonspecific human cervical cancer cells (HeLa) and a nonspecific aptamer sequence. The proposed electrochemical aptasensor showed high sensitivity toward A549 cells with a detection limit of 1.2 × 103 cells/mL. The results indicate that our label-free electrochemical aptasensor has great potential in the design of aptasensors for the diagnostics of other types of cancer cells with broad detection capability in clinical analysis. Graphical abstract.
Collapse
|
22
|
Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, Yang Z, Yan H, Cui C, Tan W. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. NANO-MICRO LETTERS 2020; 12:103. [PMID: 34138099 PMCID: PMC7770922 DOI: 10.1007/s40820-020-00423-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 05/17/2023]
Abstract
Investigation of metal-organic frameworks (MOFs) for biomedical applications has attracted much attention in recent years. MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure, ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. In this review, the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section. Then, state-of-the-art strategies to functionalize MOFs with therapeutic agents were summarized, including surface adsorption, pore encapsulation, covalent binding, and functional molecules as building blocks. In the third section, the most recent biological applications of MOFs for intracellular delivery of drugs, proteins, and nucleic acids, especially aptamers, were presented. Finally, challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
Collapse
Affiliation(s)
- Yujia Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Liwei Zheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xu Qian
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
| | - Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - He Yan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA.
| |
Collapse
|
23
|
Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. iScience 2020; 23:100979. [PMID: 32222697 PMCID: PMC7103779 DOI: 10.1016/j.isci.2020.100979] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a high heterogeneous group of tumors with a distinctly aggressive nature and high rates of relapse. So far, the lack of any known targetable proteins has not allowed a specific anti-tumor treatment. Therefore, the identification of novel agents for specific TNBC targeting and treatment is desperately needed. Here, by integrating cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) for the specific recognition of TNBC cells with high-throughput sequencing technology, we identified a panel of 2′-fluoropyrimidine-RNA aptamers binding to TNBC cells and their cisplatin- and doxorubicin-resistant derivatives at low nanomolar affinity. These aptamers distinguish TNBC cells from both non-malignant and non-TNBC breast cancer cells and are able to differentiate TNBC histological specimens. Importantly, they inhibit TNBC cell capacity of growing in vitro as mammospheres, indicating they could also act as anti-tumor agents. Therefore, our newly identified aptamers are a valuable tool for selectively dealing with TNBC. Six 2′FPy-RNA aptamers were obtained by TNBC Cell-SELEX/NGS They distinguish TNBC cells from non-malignant and non-TNBC breast cancer cells They differentiate TNBC histological specimens by aptamer-based staining They inhibit TNBC cell lines capacity of growing in vitro as mammospheres
Collapse
|
24
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
|
26
|
Lupu L, Wiegand P, Hüttmann N, Rawer S, Kleinekofort W, Shugureva I, Kichkailo AS, Tomilin FN, Lazarev A, Berezovski MV, Przybylski M. Molecular Epitope Determination of Aptamer Complexes of the Multidomain Protein C-Met by Proteolytic Affinity-Mass Spectrometry. ChemMedChem 2020; 15:363-369. [PMID: 31825565 DOI: 10.1002/cmdc.201900489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/29/2019] [Indexed: 12/21/2022]
Abstract
C-Met protein is a glycosylated receptor tyrosine kinase of the hepatocyte growth factor (HGF), composed of an α and a β chain. Upon ligand binding, C-Met transmits intracellular signals by a unique multi-substrate docking site. C-Met can be aberrantly activated leading to tumorigenesis and other diseases, and has been recognized as a biomarker in cancer diagnosis. C-Met aptamers have been recently considered a useful tool for detection of cancer biomarkers. Herein we report a molecular interaction study of human C-Met expressed in kidney cells with two DNA aptamers of 60 and 64 bases (CLN0003 and CLN0004), obtained using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure. Epitope peptides of aptamer-C-Met complexes were identified by proteolytic affinity-mass spectrometry in combination with SPR biosensor analysis (PROTEX-SPR-MS), using high-pressure proteolysis for efficient digestion. High affinities (KD , 80-510 nM) were determined for aptamer-C-Met complexes, with two-step binding suggested by kinetic analysis. A linear epitope, C-Met (381-393) was identified for CLN0004, while the CLN0003 aptamer revealed an assembled epitope comprised of two peptide sequences, C-Met (524-543) and C-Met (557-568). Structure modeling of C-Met-aptamers were consistent with the identified epitopes. Specificities and affinities were ascertained by SPR analysis of the synthetic epitope peptides. The high affinities of aptamers to C-Met, and the specific epitopes revealed render them of high interest for cellular diagnostic studies.
Collapse
Affiliation(s)
- Loredana Lupu
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Pascal Wiegand
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Nico Hüttmann
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stephan Rawer
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Wolfgang Kleinekofort
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany.,Dept. of Engineering Sciences, Rhein Main University, 65428, Rüsselsheim am Main, Germany
| | - Irina Shugureva
- Siberian Federal University, Krasnoyarsk, 66041, Russia.,Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Laboratory for Digital Controlled Drugs and Theranostics, Krasnoyarsk, 660036, Russia
| | - Anna S Kichkailo
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Laboratory for Digital Controlled Drugs and Theranostics, Krasnoyarsk, 660036, Russia
| | - Felix N Tomilin
- Kirensky Institute of Physics, Russian Academy of Sciences Siberian Branch, Krasnoyarsk, 660036, Russia.,Siberian Federal University, Krasnoyarsk, 66041, Russia
| | - Alexander Lazarev
- Pressure Biosciences Inc., 14 Norfolk Ave., South Easton, MA, 02375, USA
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael Przybylski
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| |
Collapse
|
27
|
Sinha K, Mukhopadhyay CDAS. Quantitative detection of neurotransmitter using aptamer: From diagnosis to therapeutics. J Biosci 2020; 45:44. [PMID: 32098923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurotransmitters, the small molecule chemical messenger responsible for nervous system regulation and can control joy, fear, depression, insomnia, craving for carbohydrates, drugs, and alcohols. Variation in neurotransmitter levels is a characteristic manifestation of several neurological diseases. Accurate diagnosis of these diseases caused due to an imbalance in neurotransmitter level followed by impaired transmission of signals between neurons and other body parts remains a great challenge for the clinicians. Recent evidences reveal, artificial single-stranded nucleotides called 'aptamer' are widely used as biosensors, antibody substitutes, diagnostic agents, and for targeted therapy. These aptamers are superior candidate both for early detection and diagnosis of many neurological disorders caused due to suboptimal level of neurotransmitters. Presently, noninvasive neurotransmitter detection by aptamer has been found to be an easy, fast, and cost-effective choice. In addition, increased specificity, stability, affinity, and reproducibility of aptamers, high throughput screening of aptamer-based sensing platforms have been observed. Moreover, clinical applicability of aptamer has also proved to be efficacious, though still at a preliminary stage. Herein, we review salient features of aptamerbased sensing technology used for neurotransmitter detection particularly their chemical modifications, selection, assay development, immobilization, therapeutic efficiency, and stability for early diagnosis of diseases caused due to neurotransmitter imbalance.
Collapse
Affiliation(s)
- Koel Sinha
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India
| | | |
Collapse
|
28
|
Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. J Control Release 2019; 319:285-299. [PMID: 31899273 DOI: 10.1016/j.jconrel.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023]
Abstract
Incorporating targeting moieties that recognize cancer-specific cellular markers can enhance specificity of anticancer nanomedicines. The HER2 receptor is overexpressed on numerous cancers, making it an attractive target. However, unlike many receptors that trigger endocytosis upon ligand binding, HER2 is an internalization-resistant receptor. As most chemotherapeutics act on intracellular targets, this presents a significant challenge for exploiting HER2 overexpression for improved tumor killing. However, hyper-crosslinking of HER2 has been shown to override the receptor's native behavior and trigger internalization. This research co-opts this crosslinking-mediated internalization for efficient intracellular delivery of an anticancer nanomedicine - specifically a HPMA copolymer-based drug delivery system. This polymeric carrier was conjugated with a small (7 kDa) HER2-binding affibody peptide to produce a panel of polymer-affibody conjugates with valences from 2 to 10 peptides per polymer chain. The effect of valence on surface binding and uptake was evaluated separately. All conjugates demonstrated similar (nanomolar) binding affinity towards HER2-positive ovarian carcinoma cells, but higher-valence conjugates induced more rapid endocytosis, with over 90% of the surface-bound conjugate internalized within 4 h. Furthermore, this enhancement was sensitive to crowding - high surface loading reduced conjugates' ability to crosslink receptors. Collectively, this evidence strongly supports a crosslinking-mediated endocytosis mechanism. Lead candidates from this panel achieved high intracellular delivery even at picomolar treatment concentrations; untargeted HPMA copolymers required 1000-fold higher treatment concentrations to achieve similar levels of intracellular accumulation. This increased intracellular delivery also translated to a more potent nanomedicine against HER2-positive cells; incorporation of the chemotherapeutic paclitaxel into this targeted carrier enhanced cytotoxicity over untargeted polymer-drug conjugate.
Collapse
|
29
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
A new small cell lung cancer biomarker identified by Cell-SELEX generated aptamers. Exp Cell Res 2019; 382:111478. [DOI: 10.1016/j.yexcr.2019.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
31
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
32
|
Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics 2019; 9:3262-3279. [PMID: 31244953 PMCID: PMC6567960 DOI: 10.7150/thno.31885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The elegant properties of deoxyribonucleic acid (DNA), such as accurate recognition, programmability and addressability, make it a well-defined and promising material to develop various molecular probes, drug delivery carriers and theranostic systems for cancer diagnosis and therapy. In addition, supramolecular chemistry, also termed "chemistry beyond the molecule", is a promising research field that aims to develop functional chemical systems by bringing discrete molecular components together in a manner that invokes noncovalent intermolecular forces, such as hydrophobic interaction, hydrogen bonding, metal coordination, and shape or size matching. Thus, DNA-supramolecule conjugates (DSCs) combine accurate recognition, programmability and addressability of DNA with the greater toolbox of supramolecular chemistry. This review discusses the applications of DSCs in sensing, protein activity regulation, cell behavior manipulation, and biomedicine.
Collapse
Affiliation(s)
- Kun Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai (P. R. China)
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
33
|
Zhao Y, Ma W, Zou S, Chen B, Cheng H, He X, Wang K. Terminal deoxynucleotidyl transferase-initiated molecule beacons arrayed aptamer probe for sensitive detection of metastatic colorectal cancer cells. Talanta 2019; 202:152-158. [PMID: 31171163 DOI: 10.1016/j.talanta.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world, which can lead to considerably high mortality rate. It was reported that the prognosis is extremely poor and survival is often measured in months once CRC metastases become clinically evident. Therefore, the development of effective approach for metastatic CRC cells detection and imaging may potentially be significant and helpful for CRC prognosis and treatment. Therefore, we proposed a sensitive and specific approach for high-metastatic CRC LoVo cells detection and imaging by using terminal deoxynucleotidyl transferase (TdT)-initiated molecule beacons (MBs) arrayed fluorescent aptamer probes (denoted as TMAP). In this approach, the aptamer W3 targeting high-metastatic CRC LoVo cells was elongated to form W3-poly A at the 3'-hydroxyl terminus with repeated A bases in the presence of TdT and dATP. The MBs designed with poly T sequence in the loop were then hybridized with the poly A in the aptamer W3. The TMAP was easily constructed without the need of aptamer modification. It was demonstrated that this approach could specifically detect and image the high-metastatic CRC LoVo cells from the mixture of high-metastatic CRC LoVo cells and non-metastatic HCT-8 cells. Compared with 6-carboxyfluorescein (6-FAM) labeled aptamer W3, the TMAP was demonstrated to have a much stronger fluorescence signal on the target cells, realizing a 4-fold increase in signal-to-background ratio (SBR). Determination by flow cytometry allowed for detection of as low as 23 CRC LoVo cells in 200 μL cell culture medium. The high sensitivity and the capability for using in complicate biological samples imply that this approach holds considerable potential for metastatic CRC detection and therapy.
Collapse
Affiliation(s)
- Yujie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
34
|
Chen L, Li Q, Zheng Z, Xie J, Lin X, Jiang C, Xu H, Wu X, Wu J, Zhang H. Design and optimize N-substituted EF24 as effective and low toxicity NF-κB inhibitor for lung cancer therapy via apoptosis-to-pyroptosis switch. Chem Biol Drug Des 2019; 94:1368-1377. [PMID: 30873716 DOI: 10.1111/cbdd.13514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/02/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
Abstract
As NF-κB signaling pathway is constitutively activated in lung cancer, targeting NF-κB has a potential for the treatment. EF24 has been proved to be a NF-κB inhibitor with good antitumor activity, while whose toxicity possibly became one of the obstacles to enter into clinical application. In order to find high efficiency and low toxicity NF-κB inhibitors, EF24 was modified and 13d was screened out. It was proved that 13d possessed an effective combination of inhibiting NF-κB pathway and showing lower cytotoxicity on normal cells as well as less toxicity in acute toxicity experiment compared with the lead compound of EF24. In addition, 13d was found to inhibit cell vitality, arrest cell cycle in G2/M phase, promote cell apoptosis, and suppress the xenograft tumor growth. Furthermore, 13d was elucidated to induce pyroptosis developing from apoptosis, which was associated with the inhibition of NF-κB. Taken together, it was suggested that 13d was a potent antitumor agent.
Collapse
Affiliation(s)
- Liping Chen
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingwen Xie
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Whenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengxi Jiang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haineng Xu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoping Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huajie Zhang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
35
|
Bashmakova EE, Krasitskaya VV, Zamay GS, Zamay TN, Frank LA. Bioluminescent aptamer-based solid-phase microassay to detect lung tumor cells in plasma. Talanta 2019; 199:674-678. [PMID: 30952314 DOI: 10.1016/j.talanta.2019.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Two high-affinity DNA aptamers for lung tumor cells were applied as biospecific elements in bioluminescent assay of patient blood. The oligonucleotide complementary to the 5' end of both aptamers carrying either biotin or Ca2+-regulated photoprotein obelin was used to form a sandwich-type analytical complex on the surfaces of magnetic streptavidin-activated microspherical particles. Clinical blood samples from cases of morphologically confirmed lung cancer and control samples were analyzed applying the developed assay. From the receiver operator curve (ROC) analysis, the chosen threshold value as clinical decision limit offers the sensitivity of 91.5% and the specificity of 75% (p < 0.001). The area under ROC curve with the value of 0.901 distinguishes well between the two groups under investigation.
Collapse
Affiliation(s)
- Eugenia E Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia; Siberian Federal University, Svobodny pr. 79, 660041 Krasnoyarsk, Russia
| | - Vasilisa V Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Galina S Zamay
- State Medical University named after V.F. Voyno-Yasenetsky, Partizana Zheleznyaka St. 1, 660022 Krasnoyarsk, Russia
| | - Tatiana N Zamay
- State Medical University named after V.F. Voyno-Yasenetsky, Partizana Zheleznyaka St. 1, 660022 Krasnoyarsk, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia; Siberian Federal University, Svobodny pr. 79, 660041 Krasnoyarsk, Russia.
| |
Collapse
|
36
|
Wang J, Gao T, Luo Y, Wang Z, Zhang Y, Zhang Y, Zhang Y, Pei R. In Vitro Selection of a DNA Aptamer by Cell-SELEX as a Molecular Probe for Cervical Cancer Recognition and Imaging. J Mol Evol 2019; 87:72-82. [PMID: 30659315 DOI: 10.1007/s00239-019-9886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Aptamers have become the most promising recognition reagents in terms of early diagnosis and effective treatment of cancers. In this study, using cervical cancer as a model, we have identified a DNA aptamer specifically binding to cervical cancer cells with high affinity using the cell-SELEX (systematic evolution of ligands by exponential enrichment) method, in which a negative selection was carried out using normal epithelial cells as control. The binding abilities of 6 selected truncated aptamers were determined by laser confocal fluorescence microscopy and flow cytometry, while most of them only recognize the target cells and do not bind the control cells, and the aptamer C-9S with 51-mer shows the best binding affinity to Ca Ski cells (target cells) with a dissociation constant value of 19.3 ± 2.9 nM. Moreover, at physiological temperature, C-9S remains its specific recognition capability to Ca Ski cells as well. Meanwhile, C-9S shows a similar binding ability to another cervical cancer cells (HeLa). Therefore, on the basis of its excellent targeting properties and inherent functional versatility of aptamer, C-9S holds great potential to be a molecular probe for early detection, in vivo imaging, and targeted delivery for further researches in cancer.
Collapse
Affiliation(s)
- Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
37
|
Liu WT, Lee WB, Tsai YC, Chuang YJ, Hsu KF, Lee GB. An automated microfluidic system for selection of aptamer probes against ovarian cancer tissues. BIOMICROFLUIDICS 2019; 13:014114. [PMID: 30867884 PMCID: PMC6404914 DOI: 10.1063/1.5085133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/10/2019] [Indexed: 05/17/2023]
Abstract
Because of the difficulty of treatment in its latest stages, cancer is among the leading causes of death worldwide. Therefore, high-affinity and specificity biomarkers are still in demand for many cancer types, and the utility of aptamers to serve in this regard has been explored recently. Although a process known as "systematic evolution of ligands by exponential enrichment" (SELEX) has been used to generate aptamer-based cancer biomarkers, this approach is complicated, time-consuming, and labor-intensive. An automated microfluidic system was consequently developed herein to screen ovarian cancer-specific aptamers via on-chip SELEX with clinical cancer tissue samples. The integrated microfluidic system consisted of an integrated microfluidic chip, a temperature control module equipped with 12 thermoelectric coolers, and a flow control module for controlling 36 electromagnetic valves such that the entire, tissue-based SELEX process could be fully automated and carried out within 15 h. Highly specific ovarian cancer aptamers with high affinity (dissociation constant of 129 nM) to their cellular targets were screened with this system. Given the comparable specificity to their much more expensive antibody counterparts, these aptamers, when used in conjunction with the developed microfluidic system, may be used to diagnose ovarian cancer in its earliest stages.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuan-Jhe Chuang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70403, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70403, Taiwan
| | | |
Collapse
|
38
|
He Y, Chen S, Huang L, Wang Z, Wu Y, Fu F. Combination of Magnetic-Beads-Based Multiple Metal Nanoparticles Labeling with Hybridization Chain Reaction Amplification for Simultaneous Detection of Multiple Cancer Cells with Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2018; 91:1171-1177. [DOI: 10.1021/acs.analchem.8b05085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye He
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Huang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
39
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
40
|
Camorani S, Fedele M, Zannetti A, Cerchia L. TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals (Basel) 2018; 11:ph11040123. [PMID: 30428522 PMCID: PMC6316260 DOI: 10.3390/ph11040123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | | | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| |
Collapse
|
41
|
He J, Wang J, Zhang N, Shen L, Wang L, Xiao X, Wang Y, Bing T, Liu X, Li S, Shangguan D. In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX. Talanta 2018; 194:437-445. [PMID: 30609555 DOI: 10.1016/j.talanta.2018.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is regarded as the most lethal gynecologic malignancy with poor prognosis and high mortality rate. Drug-resistance was thought to be the main obstacle to improving overall survival rate of ovarian cancer. New ligands for drug-resistant ovarian cancer cells have potential for the development of diagnosis and therapy of ovarian cancer. In present work, we reported two aptamers, HF3-58 and HA5-68 generated by cell-SELEX, against a paclitaxel-resistant ovarian cancer cell line (A2780T). Both two aptamers exhibited high selectivity and strong affinity to target cells with low nanomolar dissociation constants. The binding of aptamers to target cells was independent of divalent ions, and was tolerant of incubation temperature and nucleases in serum. Molecular targets of the two aptamers were preliminarily demonstrated to be two different glycoproteins on cell surface of A2780T cells. Owing to the structure stability and high resistance to nuclease, these two aptamers had good performance in the detection of drug-resistant ovarian cancer cells in human serum.
Collapse
Affiliation(s)
- Junqing He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Xiao
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China; Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songqing Li
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev 2018; 134:65-78. [PMID: 30125604 PMCID: PMC6239901 DOI: 10.1016/j.addr.2018.08.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to specifically bind with target molecules. Aptamers can be relatively easily screened, reproducibly manufactured, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Pereira RL, Nascimento IC, Santos AP, Ogusuku IEY, Lameu C, Mayer G, Ulrich H. Aptamers: novelty tools for cancer biology. Oncotarget 2018; 9:26934-26953. [PMID: 29928493 PMCID: PMC6003562 DOI: 10.18632/oncotarget.25260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Although the term ‘cancer’ was still over two thousand years away of being coined, the first known cases of the disease date back to about 3000BC, in ancient Egypt. Five thousand years later, still lacking a cure, it has become one of the leading causes of death, killing over half a dozen million people yearly. So far, monoclonal antibodies are the most successful immune-therapy tools when it comes to fighting cancer. The number of clinical trials that use them has been increasing steadily during the past few years, especially since the Food and Drug Administration greenlit the use of the first immune-checkpoint blockade antibodies. However, albeit successful, this approach does come with the cost of auto-inflammatory toxicity. Taking this into account, the development of new therapeutic reagents with low toxicity becomes evident, particularly ones acting in tandem with the tools currently at our disposal. Ever since its discovery in the early nineties, aptamer technology has been used for a wide range of diagnostic and therapeutic applications. With similar properties to those of monoclonal antibodies, such as high-specificity of recognition and high-affinity binding, and the advantages of being developed using in vitro selection procedures, aptamers quickly became convenient building blocks for the generation of multifunctional constructs. In this review, we discuss the steps involved in the in vitro selection process that leads to functional aptamers - known as Systematic Evolution of Ligands by Exponential Enrichment - as well as the most recent applications of this technology in diagnostic and treatment of oncological illnesses. Moreover, we also suggest ways to improve such use.
Collapse
Affiliation(s)
- Ricardo L Pereira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isis C Nascimento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Ana P Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isabella E Y Ogusuku
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121, Bonn, Germany.,Center of Aptamer Research and Development (CARD), University of Bonn, 53121, Bonn, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
44
|
Li F, Guo Y, Wang X, Sun X. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens Bioelectron 2018; 115:7-13. [PMID: 29783082 DOI: 10.1016/j.bios.2018.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
A dual-target electrochemical aptasensor was developed for the simultaneous detection of multiple antibiotics based on metal ions as signal tracers and nanocomposites as signal amplification strategy. Metal ions such as Cd2+ and Pb2+ could generate distinct differential pulse voltammetry (DPV) peaks. When targets were present, kanamycin (KAN) and streptomycin (STR) as models, the KAN aptamer (KAP) and STR aptamer (STP) were released from their complementary strands, with more change of Cd2+ and Pb2+ corresponding to peak currents. At the same time, complementary strand of KAP (cKAP) and STP (cSTP) were linked with the poly (A) structure (cSTP-PolyA-cKAP) to increase their conformational freedom. Graphitized multi-walled carbon nanotubes (MWCNTGr) and carbon nanofibers-gold nanoparticles (CNFs-AuNPs) as a biosensor platform enhanced the surface area to capture a large amount of cSTP-PolyA-cKAP, thus amplifying the detection response. Under the optimal conditions, the aptasensor could detect KAN and STR as low as 74.50 pM and 36.45 pM respectively with the range from 0.1 to 100 nM and exhibited excellent selectively. Moreover, this aptasensor showed promising applications for the detection of other analytes by changing corresponding aptamers.
Collapse
Affiliation(s)
- Falan Li
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China
| | - Xiangyou Wang
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| |
Collapse
|
45
|
Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers (Basel) 2018; 10:cancers10020047. [PMID: 29425173 PMCID: PMC5836079 DOI: 10.3390/cancers10020047] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Currently, functional single-stranded oligonucleotide probes, termed aptamers, generated by an iterative technology, Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are utilized to selectively target molecules or cells with high affinity. Aptamers hold considerable promise as multifunctional molecules or conjugates for challenging nanotechnologies or bioapplications now and in the future. In this review, we first describe recent endeavors to select aptamers towards live cancer cells via cell-SELEX. We then introduce several characteristic applications of selected aptamers, especially in imaging, drug delivery and therapy. In part, these advances have been made possible via synthesis of aptamer-based nanomaterials, which, by their sizes, shapes, and physicochemical properties, allow such aptamer-nanomaterial complexes to function as signal reporters or drug carriers. We also describe how these aptamer-based molecular tools contribute to cancer biomarker discovery through high-affinity recognition of membrane protein receptors.
Collapse
|
46
|
Hu Z, Tan J, Lai Z, Zheng R, Zhong J, Wang Y, Li X, Yang N, Li J, Yang W, Huang Y, Zhao Y, Lu X. Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells. NANOSCALE RESEARCH LETTERS 2017; 12:96. [PMID: 28176286 PMCID: PMC5296265 DOI: 10.1186/s11671-017-1890-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 05/23/2023]
Abstract
PURPOSE The purpose of this study is to develop a simple, effective method to label hepatoma cells with aptamers and then detect them using fluorescent silica nanoparticles (FSNPs). METHOD Streptavidin was conjugated to carboxyl-modified fluorescein isothiocyanate (FITC)-doped silica nanoparticles which were prepared by the reverse microemulsion method. The resulting streptavidin-conjugated fluorescent silica nanoparticles (SA-FSNPs) were mixed with hepatoma cells that had been labeled with biotin-conjugated aptamer TLS11a (Bio-TLS11a). The specificity and sensitivity of the nanoprobes were assessed using flow cytometry and fluorescence microscopy. Their toxicity was assessed in normal human liver cell cultures using the MTT assay, as well as in nude mice using immunohistochemistry. RESULTS SA-FSNPs showed uniform size and shape, and fluorescence properties of them was similar to the free FITC dye. SA-FSNPs were able to detect aptamer-labeled hepatoma cells with excellent specificity and good sensitivity, and they emitted strong, photobleach-resistant fluorescent signal. SA-FSNPs showed no significant toxic effects in vitro or in vivo. CONCLUSION The combination of biotin-conjugated aptamers and SA-FSNPs shows promise for sensitive detection of hepatoma cells, and potentially of other tumor cell types as well.
Collapse
Affiliation(s)
- Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Zhong
- Surgery Oncology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxue Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
- The Department of Immunology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
47
|
Abstract
Aptamers are single-stranded nucleic acid molecules that bind to and inhibit proteins and are commonly produced by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers undergo extensive pharmacological revision, which alters affinity, specificity, and therapeutic half-life, tailoring each drug for a specific clinical need. The first therapeutic aptamer was described 25 years ago. Thus far, one aptamer has been approved for clinical use, and numerous others are in preclinical or clinical development. This review presents a short history of aptamers and SELEX, describes their pharmacological development and optimization, and reviews potential treatment of diseases including visual disorders, thrombosis, and cancer.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210;
| | - Rebekah R White
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27705;
| | - Richard C Becker
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267;
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27705; .,Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina 27705;
| |
Collapse
|
48
|
Chen C, Zhou S, Cai Y, Tang F. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol 2017; 1:37. [PMID: 29872716 PMCID: PMC5871892 DOI: 10.1038/s41698-017-0041-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid aptamers are a class of high-affinity nucleic acid ligands. They serve as “chemical antibodies” since their high affinity and specificity. Nucleic acid aptamers are generated from nucleic acid random-sequence using a systematic evolution of ligands by exponential enrichment (SELEX) technology. SELEX is a process of effectively selecting aptamers from different targets. A newly developed cell-based SELEX technique has been widely used in biomarker discovery, early diagnosis and targeted cancer therapy, particular at colorectal cancer (CRC). Combined with nanostructures, nano-aptamer-drug delivery system was constructed for drug delivery. Various nanostructures functionalized with aptamers are highly efficient and has been used in CRC therapeutic applications. In the present, we introduce a cell- SELEX technique, and summarize the potential application of aptamers as biomarkers in CRC diagnosis and therapy. And some characteristics of aptamer-targeted nanocarriers in CRC have been expatiated. The challenges and perspectives for cell-SELEX are also discussed.
Collapse
Affiliation(s)
- Chan Chen
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Shan Zhou
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Yongqiang Cai
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Faqing Tang
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China.,2Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410006 Changsha, China
| |
Collapse
|
49
|
Current and Prospective Protein Biomarkers of Lung Cancer. Cancers (Basel) 2017; 9:cancers9110155. [PMID: 29137182 PMCID: PMC5704173 DOI: 10.3390/cancers9110155] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate.
Collapse
|
50
|
Civit L, Taghdisi SM, Jonczyk A, Haßel SK, Gröber C, Blank M, Stunden HJ, Beyer M, Schultze J, Latz E, Mayer G. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie 2017; 145:53-62. [PMID: 29054799 DOI: 10.1016/j.biochi.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The sensitive and specific detection of pathogenic cells is essential in clinical diagnostics. To achieve this, molecular tools are required that unequivocally recognise appropriate cell surface molecules, such as biomarkers that come along with disease onset and progression. Aptamers are short single-stranded oligonucleotides that interact with cognate target molecules with high affinity and specificity. Within the last years they have gained an increased attention as cell-recognition tools. Here, we report a systematic analysis of a cell-SELEX procedure, for the identification of aptamers that recognise breast cancer cells. Besides a comparison of conventional (Sanger) with high-throughput sequencing techniques (next-generation sequencing), three different screening techniques have been applied to characterise the binding properties of selected aptamer candidates. This method has been found to be beneficial in finding DNA aptamers, rarely enriched in the libraries. Finally, four DNA aptamers were identified that exhibit broad-spectrum interaction patterns to different cancer cell lines derived from solid tumours.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Seyed Mohammad Taghdisi
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany; Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|