1
|
Sun J, Cong Q, Sun T, Xi S, Liu Y, Zeng R, Wang J, Zhang W, Gao J, Qian J, Qin S. Prefrontal cortex-specific Dcc deletion induces schizophrenia-related behavioral phenotypes and fail to be rescued by olanzapine treatment. Eur J Pharmacol 2023; 956:175940. [PMID: 37541362 DOI: 10.1016/j.ejphar.2023.175940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Multiple genome studies have discovered that variation in deleted in colorectal carcinoma (Dcc) at transcription and translation level were associated with the occurrences of psychiatric disorders. Yet, little is known about the function of Dcc in schizophrenia (SCZ)-related behavioral abnormalities and the efficacy of antipsychotic drugs in vivo. Here, we used an animal model of prefrontal cortex-specific knockdown (KD) of Dcc in adult C57BL/6 mice to study the attention deficits and impaired locomotor activity. Our results supported a critical role of Dcc deletion in SCZ-related behaviors. Notably, olanzapine rescued the SCZ-related behaviors in the MK801-treated mice but not in the cortex-specific Dcc KD mice, indicating that Dcc play a critical in the mechanism of antipsychotic effects of olanzapine. Knockdown of Dcc in prefrontal cortex results in glutamatergic dysfunction, including defects in glutamine synthetase and postsynaptic maturation. As one of the major risk factors of the degree of antipsychotic response, Dcc deletion-induced glutamatergic dysfunction may be involved in the underlying mechanism of treatment resistance of olanzapine. Our findings identified Dcc deletion-mediated SCZ-related behavioral defects, which serve as a valuable animal model for study of SCZ and amenable to targeted investigations in mechanistic hypotheses of the mechanism underlying glutamatergic dysfunction-induced antipsychotic treatment resistance.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qijie Cong
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Rongsen Zeng
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weining Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212013, PR China.
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
2
|
Enhancing the Antipsychotic Effect of Risperidone by Increasing Its Binding Affinity to Serotonin Receptor via Picric Acid: A Molecular Dynamics Simulation. Pharmaceuticals (Basel) 2022; 15:ph15030285. [PMID: 35337083 PMCID: PMC8952232 DOI: 10.3390/ph15030285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the utility of inexpensive techniques in evaluating the interactions of risperidone (Ris) with different traditional -acceptors, with subsequent application of the findings into a Ris pharmaceutical formulation with improved therapeutic properties. Molecular docking calculations were performed using Ris and its different charge-transfer complexes (CT) with picric acid (PA), 2,3-dichloro-5,6-dicyanop-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), tetracyano ethylene (TCNE), tetrabromo-pquinon (BL), and tetrachloro-p-quinon (CL), as donors, and three receptors (serotonin, dopamine, and adrenergic) as acceptors to study the comparative interactions among them. To refine the docking results and further investigate the molecular processes of receptor–ligand interactions, a molecular dynamics simulation was run with output obtained from AutoDock Vina. Among all investigated complexes, the [(Ris) (PA)]-serotonin (CTcS) complex showed the highest binding energy. Molecular dynamics simulation of the 100 ns run revealed that both the Ris-serotonin (RisS) and CTcS complexes had a stable conformation; however, the CTcS complex was more stable.
Collapse
|
3
|
Nakamura Y, Nakamura Y, Pelosi A, Djemai B, Debacker C, Hervé D, Girault JA, Tsurugizawa T. fMRI detects bilateral brain network activation following unilateral chemogenetic activation of direct striatal projection neurons. Neuroimage 2020; 220:117079. [DOI: 10.1016/j.neuroimage.2020.117079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
|
4
|
Shi Q, Pei F, Silverman GA, Pak SC, Perlmutter DH, Liu B, Bahar I. Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis. Int J Mol Sci 2020; 21:ijms21082855. [PMID: 32325894 PMCID: PMC7215584 DOI: 10.3390/ijms21082855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
Collapse
Affiliation(s)
- Qingya Shi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
| | - Gary A. Silverman
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - Stephen C. Pak
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - David H. Perlmutter
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - Bing Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- Correspondence: (B.L.); (I.B.)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- Correspondence: (B.L.); (I.B.)
| |
Collapse
|
5
|
Kaczor AA, Targowska-Duda KM, Silva AG, Kondej M, Biała G, Castro M. N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1 H- benzimidazol-1-yl)propyl]piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic. Biomolecules 2020; 10:E349. [PMID: 32102432 PMCID: PMC7072648 DOI: 10.3390/biom10020349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
N-(2-hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H-benzimidazol -1-yl)propyl]piperidine-4-carboxamide (D2AAK4) is a multitarget ligand of aminergic G protein-coupled receptors (GPCRs) identified in structure-based virtual screening. Here we present detailed in vitro, in silico and in vivo investigations of this virtual hit. D2AAK4 has an atypical antipsychotic profile and low affinity to off-targets. It interacts with aminergic GPCRs, forming an electrostatic interaction between its protonatable nitrogen atom and the conserved Asp 3.32 of the receptors. At the dose of 100 mg/kg D2AAK4 decreases amphetamine-induced hyperactivity predictive of antipsychotic activity, improves memory consolidation in passive avoidance test and has anxiogenic properties in elevated plus maze test (EPM). Further optimization of the virtual hit D2AAK4 will be aimed to balance its multitarget profile and to obtain analogs with anxiolytic activity.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katarzyna M. Targowska-Duda
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Andrea G. Silva
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (A.G.S.); (M.C.)
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Marián Castro
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (A.G.S.); (M.C.)
| |
Collapse
|
6
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Allen DC, Carlson TL, Xiong Y, Jin J, Grant KA, Cuzon Carlson VC. A Comparative Study of the Pharmacokinetics of Clozapine N-Oxide and Clozapine N-Oxide Hydrochloride Salt in Rhesus Macaques. J Pharmacol Exp Ther 2019; 368:199-207. [PMID: 30523062 PMCID: PMC6337003 DOI: 10.1124/jpet.118.252031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Translating chemogenetic techniques from nonhuman primates to potential clinical applications has been complicated in part due to in vivo conversion of the chemogenetic actuator, clozapine N-oxide (CNO), to its pharmacologically active parent compound, clozapine, a ligand with known side effects, including five boxed warnings from the Food and Drug Administration. Additionally, the limited solubility of CNO requires high concentrations of potentially toxic detergents such as dimethylsulfoxide (DMSO). To address these concerns, pharmacokinetic profiling of commercially available CNO in DMSO (CNO-DMSO, 10% v/v DMSO in saline) and a water-soluble salt preparation (CNO-HCl, saline) was conducted in rhesus macaques. A time course of blood plasma and cerebrospinal fluid (CSF) concentrations of CNO and clozapine was conducted (30-240 minutes post-administration) following a range of doses (3-10 mg/kg, i.m. and/or i.v.) of CNO-DMSO or CNO-HCl. CNO-HCl resulted in 6- to 7-fold higher plasma concentrations of CNO compared to CNO-DMSO, and relatively less clozapine (3%-5% clozapine/CNO in the CNO-DMSO group and 0.5%-1.5% clozapine/CNO in the CNO-HCl group). Both groups had large between-subjects variability, pointing to the necessity of performing individual CNO pharmacokinetic studies prior to further experimentation. The ratio of CNO measured in the CSF was between 2% and 6% of that measured in the plasma and did not differ across drug preparation, indicating that CSF concentrations may be approximated from plasma samples. In conclusion, CNO-HCl demonstrated improved bioavailability compared with CNO-DMSO with less conversion to clozapine. Further investigation is needed to determine if brain concentrations of clozapine following CNO-HCl administration are pharmacologically active at off-target monoaminergic receptor systems in the primate brain.
Collapse
Affiliation(s)
- Daicia C Allen
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| | - Timothy L Carlson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| | - Yan Xiong
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| | - Jian Jin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| | - Verginia C Cuzon Carlson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon (D.C.A., K.A.G., V.C.C.C.); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon (T.L.C., K.A.G., V.C.C.C.); and Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (Y.X., J.J.)
| |
Collapse
|
8
|
Leffler KE, Abdel-Rahman AA. Estrogen-Dependent Disruption of Adiponectin-Connexin43 Signaling Underlies Exacerbated Myocardial Dysfunction in Diabetic Female Rats. J Pharmacol Exp Ther 2019; 368:208-217. [PMID: 30523063 PMCID: PMC6337006 DOI: 10.1124/jpet.118.254029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
The reasons for the higher severity of type 2 diabetes (T2DM)-associated cardiomyopathy in women, despite their inherent estrogen (E2)-dependent cardioprotection, remain unknown. We hypothesized that the reliance of the healthy females' hearts on augmented adiponectin (APN)-connexin 43 (Cx43) signaling becomes paradoxically detrimental when disrupted by T2DM in an E2-dependent manner. We tested this hypothesis in high-fat, low- dose streptozotocin diabetic rats and their controls with the following designations: 1) sham-operated (SO), 2) ovariectomized (OVX), 3) ovariectomized with E2 supplementation (OVX + E2), and 4) male. E2-replete (SO or OVX + E2) diabetic rats exhibited higher mortality and greater increases in left ventricular (LV) mass and reduced LV developed pressure, LV contractility, and fractional shortening but preserved ejection fraction. Further, compared with respective nondiabetic counterparts, the hearts of these E2-replete diabetic rats exhibited greater upregulation of cardiac estrogen receptor α and reductions in Cx43 expression and in the phosphorylation levels of the survival molecules extracellular regulating kinases 1/2 and phosphorylated AKT (pAKT). Whereas serum APN was reduced, independent of sex and ovarian hormone status in all DM rats, cardiac APN was most drastically reduced in DM SO rats. The present translational findings are the first to implicate ovarian hormones/E2 in the exacerbated myocardial dysfunction in female diabetic subjects and to suggest a pivotal role for malfunctioning cardiac APN-Cx43 signaling in this sex/E2-specific clinical problem.
Collapse
Affiliation(s)
- Korin E Leffler
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, North Carolina
| |
Collapse
|
9
|
Multi-Target Approach for Drug Discovery against Schizophrenia. Int J Mol Sci 2018; 19:ijms19103105. [PMID: 30309037 PMCID: PMC6213273 DOI: 10.3390/ijms19103105] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 01/15/2023] Open
Abstract
Polypharmacology is nowadays considered an increasingly crucial aspect in discovering new drugs as a number of original single-target drugs have been performing far behind expectations during the last ten years. In this scenario, multi-target drugs are a promising approach against polygenic diseases with complex pathomechanisms such as schizophrenia. Indeed, second generation or atypical antipsychotics target a number of aminergic G protein-coupled receptors (GPCRs) simultaneously. Novel strategies in drug design and discovery against schizophrenia focus on targets beyond the dopaminergic hypothesis of the disease and even beyond the monoamine GPCRs. In particular these approaches concern proteins involved in glutamatergic and cholinergic neurotransmission, challenging the concept of antipsychotic activity without dopamine D₂ receptor involvement. Potentially interesting compounds include ligands interacting with glycine modulatory binding pocket on N-methyl-d-aspartate (NMDA) receptors, positive allosteric modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, positive allosteric modulators of metabotropic glutamatergic receptors, agonists and positive allosteric modulators of α7 nicotinic receptors, as well as muscarinic receptor agonists. In this review we discuss classical and novel drug targets for schizophrenia, cover benefits and limitations of current strategies to design multi-target drugs and show examples of multi-target ligands as antipsychotics, including marketed drugs, substances in clinical trials, and other investigational compounds.
Collapse
|
10
|
Kim D, Ryba NL, Kalabalik J, Westrich L. Critical Review of the Use of Second-Generation Antipsychotics in Obsessive-Compulsive and Related Disorders. Drugs R D 2018; 18:167-189. [PMID: 30171515 PMCID: PMC6131117 DOI: 10.1007/s40268-018-0246-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Currently, all second-generation antipsychotics are approved for schizophrenia. Many are also approved for bipolar disorder, with some also approved as adjunctive treatment for depression and autism-related irritability. Second-generation antipsychotics are increasingly being prescribed for indications other than those approved by the Food and Drug Administration, such as in dementia, anxiety, and post-traumatic stress disorder to name a few. Obsessive-compulsive and related disorders are a group of disorders characterized by preoccupation and repetitive behaviors. According to the latest edition of the Diagnostic and Statistical Manual of Mental Disorders, obsessive-compulsive disorder, body dysmorphic disorder, trichotillomania, hoarding disorder, and excoriation, the latter two being newly designated disorders, fall under obsessive-compulsive and related disorders. Due to a lack of well designed clinical studies specifically addressing the use of second-generation antipsychotics in obsessive-compulsive and related disorders, it is unknown whether these agents are clinically beneficial. Current research describing the pathophysiology of these disorders shows the involvement of similar brain regions and neurotransmitters across the five obsessive-compulsive and related disorders. Despite differences in the receptor binding profiles, second-generation antipsychotics share many common pharmacodynamics properties. This review sought to examine all the published reports of second-generation antipsychotics being used in the management of symptoms of the aforementioned diseases and compile evidence for clinicians who encounter patients who are unresponsive to standard treatment.
Collapse
Affiliation(s)
- Dongmi Kim
- Fairleigh Dickinson University School of Pharmacy and Health Sciences, Florham Park, NJ, USA.
| | - Nicole L Ryba
- Fairleigh Dickinson University School of Pharmacy and Health Sciences, Florham Park, NJ, USA
| | - Julie Kalabalik
- Fairleigh Dickinson University School of Pharmacy and Health Sciences, Florham Park, NJ, USA
| | - Ligia Westrich
- Fairleigh Dickinson University School of Pharmacy and Health Sciences, Florham Park, NJ, USA
| |
Collapse
|
11
|
Nagata M, Kimura Y, Ishiwata Y, Takahashi H, Yasuhara M. Clozapine-Induced Acute Hyperglycemia Is Accompanied with Elevated Serum Concentrations of Adrenaline and Glucagon in Rats. Biol Pharm Bull 2018; 41:1286-1290. [DOI: 10.1248/bpb.b18-00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Masashi Nagata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yuri Kimura
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yasuyoshi Ishiwata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
| | - Hiromitsu Takahashi
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
| | - Masato Yasuhara
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
12
|
CNO Evil? Considerations for the Use of DREADDs in Behavioral Neuroscience. Neuropsychopharmacology 2018; 43:934-936. [PMID: 29303143 PMCID: PMC5854815 DOI: 10.1038/npp.2017.299] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022]
|
13
|
Evers SS, Boersma GJ, Tamashiro KL, Scheurink AJ, van Dijk G. Roman high and low avoidance rats differ in their response to chronic olanzapine treatment at the level of body weight regulation, glucose homeostasis, and cortico-mesolimbic gene expression. J Psychopharmacol 2017; 31:1437-1452. [PMID: 28892416 DOI: 10.1177/0269881117724749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olanzapine, an antipsychotic agent mainly used for treating schizophrenia, is frequently associated with body weight gain and diabetes mellitus. Nonetheless, studies have shown that not every individual is equally susceptible to olanzapine's weight-gaining effect. Therefore, Roman high and low avoidance rat strains were examined on their responsiveness to olanzapine treatment. The Roman high avoidance rat shares many behavioral and physiological characteristics with human schizophrenia, such as increased central dopaminergic sensitivity, whereas the Roman low avoidance rat has been shown to be prone to diet-induced obesity and insulin resistance. The data revealed that only the Roman high avoidance rats are susceptible to olanzapine-induced weight gain and attenuated glucose tolerance. Here it is suggested that the specific olanzapine-induced weight gain in Roman high avoidance rats could be related to augmented dopaminergic sensitivity at baseline through increased expression of prefrontal cortex dopamine receptor D1 mRNA and nucleus accumbens dopamine receptor D2 mRNA expression. Regression analyses revealed that olanzapine-induced weight gain in the Roman high avoidance rat is above all related to increased prolactin levels, whereas changes in glucose homeostasis is best explained by differences in central dopaminergic receptor expressions between strains and treatment. Our data indicates that individual differences in dopaminergic receptor expression in the cortico-mesolimbic system are related to susceptibility to olanzapine-induced weight gain.
Collapse
Affiliation(s)
- Simon S Evers
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands.,2 Department of Surgery, University of Michigan, Michigan, USA
| | - Gretha J Boersma
- 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA.,4 Department of Medical Sciences, Clinical Diabetology and Metabolism, University of Uppsala, Uppsala, Sweden
| | - Kellie Lk Tamashiro
- 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Anton Jw Scheurink
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands
| | - Gertjan van Dijk
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands
| |
Collapse
|
14
|
Huot P, Sgambato-Faure V, Fox SH, McCreary AC. Serotonergic Approaches in Parkinson's Disease: Translational Perspectives, an Update. ACS Chem Neurosci 2017; 8:973-986. [PMID: 28460160 DOI: 10.1021/acschemneuro.6b00440] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) has long been seen as a disorder caused by degeneration of the dopaminergic system, leading to the classic motor manifestations of the disease. However, there is now overwhelming evidence that PD is more than a disease merely caused by dopamine depletion. It is well-known that a myriad of other neurotransmitters are affected by the disease process. One such neurotransmitter is serotonin (5-HT). 5-HT has been shown to play a role in several motor and nonmotor manifestations of PD, including tremor, cognition, depression and psychosis. 5-HT also seems to play a critical role in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. A breadth of preclinical studies and clinical trials have been conducted that aimed at modulating the 5-HT system in order to alleviate depression, cognitive deficits, psychosis, and dyskinesia. In this Review, we summarize recent advances in the 5-HT field in PD, but with a translational emphasis. We start by presenting a novel nonhuman primate model of PD that presents with dual dopamine and 5-HT lesions. We then present preclinical and clinical data that introduce new concepts, such as the use of biased and partial agonists, as well as molecules recently introduced to the field of PD, such as eltoprazine, pimavanserin, nelotanserin, and SYN-120, to enhance therapeutic benefit while minimizing adverse events, notably on parkinsonian disability.
Collapse
Affiliation(s)
- Philippe Huot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department
of Pharmacology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Unité
des Troubles du Mouvement André Barbeau, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2L 4M1, Canada
- Division
of Neurology, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Véronique Sgambato-Faure
- Institute of Cognitive
Neuroscience Marc Jeannerod, UMR 5229 CNRS, 69 675 Cedex Bron, France
- University Lyon 1, 69100 Villeurbanne, France
| | - Susan H. Fox
- Movement
Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Andrew C. McCreary
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333 CN Leiden, The Netherlands
| |
Collapse
|
15
|
Extended N-Arylsulfonylindoles as 5-HT₆ Receptor Antagonists: Design, Synthesis & Biological Evaluation. Molecules 2016; 21:molecules21081070. [PMID: 27537868 PMCID: PMC6273627 DOI: 10.3390/molecules21081070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 01/16/2023] Open
Abstract
Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenyl)piperazin-1-yl)-1-(1-tosyl-1H-indol-3-yl)ethanol (4b), 1-(1-(4-iodophenylsulfonyl)-1H-indol-3-yl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethanol (4g) and 2-(4-(2-methoxyphenyl)piperazin-1-yl)-1-(1-(naphthalen-1-ylsulfonyl)-1H-indol-3-yl)ethanol (4j) showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83). Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM) in calcium mobilisation functional assay.
Collapse
|
16
|
Thomas T, Fang Y, Yuriev E, Chalmers DK. Ligand Binding Pathways of Clozapine and Haloperidol in the Dopamine D2 and D3 Receptors. J Chem Inf Model 2016; 56:308-21. [PMID: 26690887 DOI: 10.1021/acs.jcim.5b00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of a small molecule ligand to its protein target is most often characterized by binding affinity and is typically viewed as an on/off switch. The more complex reality is that binding involves the ligand passing through a series of intermediate states between the solution phase and the fully bound pose. We have performed a set of 29 unbiased molecular dynamics simulations to model the binding pathways of the dopamine receptor antagonists clozapine and haloperidol binding to the D2 and D3 dopamine receptors. Through these simulations we have captured the binding pathways of clozapine and haloperidol from the extracellular vestibule to the orthosteric binding site and thereby, we also predict the bound pose of each ligand. These are the first long time scale simulations of haloperidol or clozapine binding to dopamine receptors. From these simulations, we have identified several important stages in the binding pathway, including the involvement of Tyr7.35 in a "handover" mechanism that transfers the ligand between the extracellular vestibule and Asp3.32. We have also performed interaction and cluster analyses to determine differences in binding pathways between the D2 and D3 receptors and identified metastable states that may be of use in drug design.
Collapse
Affiliation(s)
- Trayder Thomas
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Yu Fang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Abdel-Fattah MAO, Abadi AH, Lehmann J, Schweikert PM, Enzensperger C. D1-like receptors distinguishing thieno-azecine regioisomers. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00258c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of novel azecine derivatives with modulated dopaminergic receptor selectivity and affinity profiles.
Collapse
Affiliation(s)
- Mohamed A. O. Abdel-Fattah
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy and Biotechnology
- German University in Cairo
- Cairo 11835
- Egypt
| | - Jochen Lehmann
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Peter M. Schweikert
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Christoph Enzensperger
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| |
Collapse
|
18
|
Kooistra AJ, Kuhne S, de Esch IJP, Leurs R, de Graaf C. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol 2014; 170:101-26. [PMID: 23713847 DOI: 10.1111/bph.12248] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Chemogenomics focuses on the discovery of new connections between chemical and biological space leading to the discovery of new protein targets and biologically active molecules. G-protein coupled receptors (GPCRs) are a particularly interesting protein family for chemogenomics studies because there is an overwhelming amount of ligand binding affinity data available. The increasing number of aminergic GPCR crystal structures now for the first time allows the integration of chemogenomics studies with high-resolution structural analyses of GPCR-ligand complexes. EXPERIMENTAL APPROACH In this study, we have combined ligand affinity data, receptor mutagenesis studies, and amino acid sequence analyses to high-resolution structural analyses of (hist)aminergic GPCR-ligand interactions. This integrated structural chemogenomics analysis is used to more accurately describe the molecular and structural determinants of ligand affinity and selectivity in different key binding regions of the crystallized aminergic GPCRs, and histamine receptors in particular. KEY RESULTS Our investigations highlight interesting correlations and differences between ligand similarity and ligand binding site similarity of different aminergic receptors. Apparent discrepancies can be explained by combining detailed analysis of crystallized or predicted protein-ligand binding modes, receptor mutation studies, and ligand structure-selectivity relationships that identify local differences in essential pharmacophore features in the ligand binding sites of different receptors. CONCLUSIONS AND IMPLICATIONS We have performed structural chemogenomics studies that identify links between (hist)aminergic receptor ligands and their binding sites and binding modes. This knowledge can be used to identify structure-selectivity relationships that increase our understanding of ligand binding to (hist)aminergic receptors and hence can be used in future GPCR ligand discovery and design.
Collapse
Affiliation(s)
- A J Kooistra
- Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure 2014; 22:1140-1151. [PMID: 25043551 DOI: 10.1016/j.str.2014.05.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/05/2014] [Accepted: 05/27/2014] [Indexed: 01/23/2023]
Abstract
The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.
Collapse
|
20
|
Selent J, Marti-Solano M, Rodríguez J, Atanes P, Brea J, Castro M, Sanz F, Loza MI, Pastor M. Novel insights on the structural determinants of clozapine and olanzapine multi-target binding profiles. Eur J Med Chem 2014; 77:91-5. [DOI: 10.1016/j.ejmech.2014.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/10/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
|
21
|
Role of MKP-1 (DUSP1) in clozapine-induced effects on the ERK1/2 signaling pathway in the rat frontal cortex. Psychopharmacology (Berl) 2013; 230:425-37. [PMID: 23771439 DOI: 10.1007/s00213-013-3165-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Clozapine affects the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in the brain, which plays an important role in its antipsychotic action. However, previous findings are inconsistent, and related molecular mechanisms require further clarification. OBJECTIVES Time- and dose-dependent effects of clozapine on the ERK1/2 pathway and its regulatory mechanism were investigated in rat frontal cortex. METHODS AND RESULTS At 15, 30, 60, and 120 min after intraperitoneal injection of clozapine (5, 10, and 20 mg/kg), changes in ERK1/2, its upstream canonical kinases (Raf1 and mitogen-activated protein kinase kinase 1/2 [MEK1/2]), and its downstream molecule (p90 ribosomal S6 kinase [p90RSK]) were investigated in rat frontal cortex. At 15 min, p-Raf1, p-MEK1/2, p-ERK1/2, and p-p90RSK all increased dose-dependently. At 30 min, p-ERK1/2 and p-p90RSK showed no significant changes, while dose-dependent increases in p-Raf1 and p-MEK1/2 were found. At 60 and 120 min, although p-ERK1/2 and p-p90RSK decreased, increases in p-Raf1 and p-MEK1/2 were maintained. A clozapine-induced reduction in ERK1/2 phosphorylation was evident at both tyrosine and threonine residues, suggesting the involvement of dual specificity phosphatases (DUSPs; mitogen-activated protein kinase phosphatases [MKPs]). mRNA expression of seven Dusps that can dephosphorylate ERK1/2 were examined; Mkp-1 (Dusp1) mRNA increased following clozapine treatment. Moreover, MKP-1 protein and phosphatase activity increased, and binding of MKP-1 to ERK1/2 was also upregulated by clozapine administration. CONCLUSIONS In rat frontal cortex, clozapine regulates ERK1/2 phosphorylation via MKP-1, which induces uncoupling between Raf1-MEK1/2 and ERK1/2-p90RSK activity. These findings suggest an important role of MKP-1 in the mechanism of action of clozapine.
Collapse
|
22
|
Characterization of the dynamic events of GPCRs by automated computational simulations. Biochem Soc Trans 2013; 41:205-12. [DOI: 10.1042/bst20120287] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent advances in membrane protein crystallography have provided extremely valuable structural information of the superfamily of GPCRs (G-protein-coupled receptors). This has been particularly true for a few receptors whose structure was solved several times under different biochemical conditions. It follows that the mechanisms of receptor conformational equilibrium and related dynamic events can be explored by computational simulations. In the present article, we summarize our recent understanding of several dynamic features of GPCRs, accomplished through the use of MD (molecular dynamics) simulations. Our pipeline for the MD simulations of GPCRs, implemented in the web service http://gpcr.usc.es, is updated in the present paper and illustrated by recent applications. Special emphasis is put on the A2A adenosine receptor, one of the selected cases where crystal structures in several conformations and conditions exist, and on the dimerization process of the CXCR4 (CXC chemokine receptor 4).
Collapse
|
23
|
Homology modeling of the human 5-HT1A, 5-HT2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation. J Mol Model 2012; 18:3639-55. [DOI: 10.1007/s00894-012-1368-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/23/2012] [Indexed: 12/22/2022]
|
24
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
25
|
Interactions of recombinant human histamine H1, H2, H3, and H4 receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:145-70. [DOI: 10.1007/s00210-011-0704-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
|
26
|
Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson's disease. Prog Neurobiol 2011; 95:163-212. [PMID: 21878363 DOI: 10.1016/j.pneurobio.2011.08.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
Although the cardinal manifestations of Parkinson's disease (PD) are attributed to a decline in dopamine levels in the striatum, a breadth of non-motor features and treatment-related complications in which the serotonergic system plays a pivotal role are increasingly recognised. Serotonin (5-HT)-mediated neurotransmission is altered in PD and the roles of the different 5-HT receptor subtypes in disease manifestations have been investigated. The aims of this article are to summarise and discuss all published preclinical and clinical studies that have investigated the serotonergic system in PD and related animal models, in order to recapitulate the state of the current knowledge and to identify areas that need further research and understanding.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, MCL 11-419, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
27
|
Molecular dynamics simulations and docking studies on 3D models of the heterodimeric and homodimeric 5-HT2A receptor subtype. Future Med Chem 2011; 3:665-81. [DOI: 10.4155/fmc.11.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: G-protein coupled receptors may exist as functional homodimers, heterodimers and even as higher aggregates. In this work, we investigate the 5-HT2A receptor, which is a known target for antipsychotic drugs. Recently, 5-HT2A has been shown to form functional homodimers and heterodimers with the mGluR2 receptor. The objective of this study is to build up 3D models of the 5-HT2A/mGluR2 heterodimer and of the 5-HT2A-5-HT2A homodimer, and to evaluate the impact of the dimerization interface on the shape of the 5-HT2A binding pocket by using molecular dynamics simulations and docking studies. Results and discussion: The heterodimer, homodimer and monomeric 5-HT2A receptors were simulated by molecular dynamics for 40 ns each. The trajectories were clustered and representative structures of six clusters for each system were generated. Inspection of the these representative structures clearly indicate an effect of the dimerization interface on the topology of the binding pocket. Docking studies allowed to generate receiver operating characteristic curves for a set of 5-HT2A ligands, indicating that different complexes prefer different classes of 5-HT2A ligands. Conclusion: This study clearly indicates that the presence of a dimerization interface must explicitly be considered when studying G-protein coupled receptors known to exist as dimers. Molecular dynamics simulation and cluster analysis are appropriate tools to study the phenomenon.
Collapse
|
28
|
Tsantili-Kakoulidou A, Agrafiotis DK. The 18th European Symposium on Quantitative Structure–Activity Relationships. Expert Opin Drug Discov 2011; 6:453-6. [DOI: 10.1517/17460441.2011.560604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Dilly S, Liégeois JF. Interaction of clozapine and its nitrenium ion with rat D2 dopamine receptors: in vitro binding and computational study. J Comput Aided Mol Des 2010; 25:163-9. [PMID: 21184252 DOI: 10.1007/s10822-010-9407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/08/2010] [Indexed: 11/29/2022]
Abstract
The interaction of diazepine analogues like clozapine or olanzapine with D2 receptor was greatly affected by a mixture of HRP/H(2)O(2) known to induce the formation of nitrenium ion. Unlike diazepine derivatives, the oxidative mixture had low impact on the affinity of oxa- and thiazepine derivatives such as loxapine, clothiapine or JL13 for the D2 receptor. Molecular docking simulations revealed a huge difference between the mode of interaction of clozapine nitrenium ion and the parent drug. Electronic and geometric changes of the tricyclic ring system caused by the oxidation appeared to prevent the compound finding the correct binding mode and could therefore explain the difference observed in binding affinities.
Collapse
Affiliation(s)
- Sébastien Dilly
- Laboratory of Medicinal Chemistry and CIRM (B36), University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
30
|
López L, Selent J, Ortega R, Masaguer CF, Domínguez E, Areias F, Brea J, Loza MI, Sanz F, Pastor M. Synthesis, 3D-QSAR, and structural modeling of benzolactam derivatives with binding affinity for the D(2) and D(3) receptors. ChemMedChem 2010; 5:1300-17. [PMID: 20544783 DOI: 10.1002/cmdc.201000101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of 37 benzolactam derivatives were synthesized, and their respective affinities for the dopamine D(2) and D(3) receptors evaluated. The relationships between structures and binding affinities were investigated using both ligand-based (3D-QSAR) and receptor-based methods. The results revealed the importance of diverse structural features in explaining the differences in the observed affinities, such as the location of the benzolactam carbonyl oxygen, or the overall length of the compounds. The optimal values for such ligand properties are slightly different for the D(2) and D(3) receptors, even though the binding sites present a very high degree of homology. We explain these differences by the presence of a hydrogen bond network in the D(2) receptor which is absent in the D(3) receptor and limits the dimensions of the binding pocket, causing residues in helix 7 to become less accessible. The implications of these results for the design of more potent and selective benzolactam derivatives are presented and discussed.
Collapse
Affiliation(s)
- Laura López
- GRIB, IMIM, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Q, Mach RH, Luedtke RR, Reichert DE. Subtype selectivity of dopamine receptor ligands: insights from structure and ligand-based methods. J Chem Inf Model 2010; 50:1970-85. [PMID: 20936866 DOI: 10.1021/ci1002747] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subtype selective dopamine receptor ligands have long been sought after as therapeutic and/or imaging agents for the treatment and monitoring of neurologic disorders. We report herein on a combined structure- and ligand-based approach to explore the molecular mechanism of the subtype selectivity for a large class of D₂-like dopamine receptor ligands (163 ligands in total). Homology models were built for both human D(₂L) and D₃ receptors in complex with haloperidol. Other ligands, which included multiple examples of substituted phenylpiperazines, were aligned against the binding conformations of haloperidol, and three-dimensional quantitative structure activity relationship (3D-QSAR) analyses were carried out. The receptor models show that although D₂ and D₃ share highly similar folds and 3D conformations, the slight sequence differences at their extracellular loop regions result in the binding cavity in D₂ being comparably shallower than in D₃, which may explain why some larger ligands bind with greater affinity at D₃ compared to D₂ receptors. The QSAR models show excellent correlation and high predictive power even when evaluated by the most stringent criteria. They confirm that the origins of subtype selectivity for the ligands arise primarily due to differences in the contours of the two binding sites. The predictive models suggest that while both steric and electrostatic interactions contribute to the compounds' binding affinity, the major contribution arises from hydrophobic interactions, with hydrogen bonding conferring binding specificity. The current work provides clues for the development of more subtype selective dopamine receptor ligands. Furthermore, it demonstrates the possibility of being able to apply similar modeling methods to other subtypes or classes of receptors to study GPCR receptor-ligand interactions at a molecular level.
Collapse
Affiliation(s)
- Qi Wang
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
32
|
Selent J, Sanz F, Pastor M, De Fabritiis G. Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 2010; 6. [PMID: 20711351 PMCID: PMC2920834 DOI: 10.1371/journal.pcbi.1000884] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 07/14/2010] [Indexed: 12/05/2022] Open
Abstract
G-protein coupled receptors, the largest family of proteins in the human genome, are involved in many complex signal transduction pathways, typically activated by orthosteric ligand binding and subject to allosteric modulation. Dopaminergic receptors, belonging to the class A family of G-protein coupled receptors, are known to be modulated by sodium ions from an allosteric binding site, although the details of sodium effects on the receptor have not yet been described. In an effort to understand these effects, we performed microsecond scale all-atom molecular dynamics simulations on the dopaminergic D2 receptor, finding that sodium ions enter the receptor from the extracellular side and bind at a deep allosteric site (Asp2.50). Remarkably, the presence of a sodium ion at this allosteric site induces a conformational change of the rotamer toggle switch Trp6.48 which locks in a conformation identical to the one found in the partially inactive state of the crystallized human β2 adrenergic receptor. This study provides detailed quantitative information about binding of sodium ions in the D2 receptor and reports a possibly important sodium-induced conformational change for modulation of D2 receptor function. G-protein coupled receptors represent more than 50% of the current drug targets, hence playing a crucial role in drug discovery today. A deeper understanding of G-protein coupled receptor functioning and modulation will help in the development of new drugs that are able to interact with such systems in a more subtle way than simple agonists or antagonists. In the present work, we studied the energetics of sodium ions, which have been described to act as an allosteric regulator within the D2 receptor using long-time molecular dynamics simulations, in order to gain insight into the molecular mechanism by which they exert this effect. In our simulations, we observed how sodium ions are able to induce a conformational change of the Trp6.48, a molecular rotamer switch which is implicated in the activation mechanism of G-protein coupled receptors. This observation, never reported before, has interesting implications for the design of drugs able to interact in a proper way with D2 receptor in particular and GPCR in general.
Collapse
Affiliation(s)
- Jana Selent
- Computer-Assisted Drug Design Laboratory, Research Unit on Biomedical Informatics, IMIM, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (GDF); (JS)
| | - Ferran Sanz
- Integrative Biomedical Informatics Laboratory, Research Unit on Biomedical Informatics, IMIM, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Pastor
- Computer-Assisted Drug Design Laboratory, Research Unit on Biomedical Informatics, IMIM, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Biochemistry and Biophysics Laboratory, Research Unit on Biomedical Informatics, IMIM, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (GDF); (JS)
| |
Collapse
|
33
|
Pecic S, Makkar P, Chaudhary S, Reddy BV, Navarro HA, Harding WW. Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg Med Chem 2010; 18:5562-75. [PMID: 20621490 DOI: 10.1016/j.bmc.2010.06.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/08/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022]
Abstract
Analogs of nantenine were docked into a modeled structure of the human 5-HT(2A) receptor using ICM Pro, GLIDE, and GOLD docking methods. The resultant docking scores were used to correlate with observed in vitro apparent affinity (K(e)) data. The GOLD docking algorithm when used with a homology model of 5-HT(2A), based on a bovine rhodopsin template and built by the program MODELLER, gives results which are most in agreement with the in vitro results. Further analysis of the docking poses among members of a C1 alkyl series of nantenine analogs, indicate that they bind to the receptor in a similar orientation, but differently than nantenine. Besides an important interaction between the protonated nitrogen of the C1 alkyl analogs and residue Asp155, we identified Ser242, Phe234, and Gly238 as key residues responsible for the affinity of these compounds for the 5-HT(2A) receptor. Specifically, the ability of some of these analogs to establish a H-bond with Ser242 and hydrophobic interactions with Phe234 and Gly238 appears to explain their enhanced affinity as compared to nantenine.
Collapse
Affiliation(s)
- Stevan Pecic
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lim HD, de Graaf C, Jiang W, Sadek P, McGovern PM, Istyastono EP, Bakker RA, de Esch IJP, Thurmond RL, Leurs R. Molecular determinants of ligand binding to H4R species variants. Mol Pharmacol 2010; 77:734-43. [PMID: 20103609 DOI: 10.1124/mol.109.063040] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The histamine H(4) receptor (H(4)R) is the latest identified histamine receptor to emerge as a potential drug target for inflammatory diseases. Animal models are employed to validate this potential drug target. Concomitantly, various H(4)R orthologs have been cloned, including the human, mouse, rat, guinea pig, monkey, pig, and dog H(4)Rs. In this article, we expressed all these H(4)R orthologs in human embryonic kidney 293T cells and compared their interactions with currently used standard H(4)R ligands, including the H(4)R agonists histamine, 4-methylhistamine, guanidinylethyl isothiourea (VUF 8430), the H(4)R antagonists 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ 7777120) and [(5-chloro-1H-benzimidazol-2-yl)carbonyl]-4-methylpiperazine (VUF 6002), and the inverse H(4)R agonist thioperamide. Most of the evaluated ligands display significantly different affinities at the different H(4)R orthologs. These "natural mutants" of H(4)R were used to study ligand-receptor interactions by using chimeric human-pig-human and pig-human-pig H(4)R proteins and site-directed mutagenesis. Our results are a useful reference for ligand selection for studies in animal models of diseases and offer new insights in the understanding of H(4)R-ligand receptor interactions.
Collapse
Affiliation(s)
- Herman D Lim
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Varin T, Gutiérrez-de-Terán H, Castro M, Brea J, Fabis F, Dauphin F, Åqvist J, Lepailleur A, Perez P, Burgueño J, Vela JM, Loza MI, Rodrigo J. Phe369(7.38) at human 5-HT(7) receptors confers interspecies selectivity to antagonists and partial agonists. Br J Pharmacol 2010; 159:1069-81. [PMID: 19922537 PMCID: PMC2839265 DOI: 10.1111/j.1476-5381.2009.00481.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Human and rat 5-HT(7) receptors were studied with a particular emphasis on the molecular interactions involved in ligand binding, searching for an explanation to the interspecies selectivity observed for a set of compounds. We performed affinity studies, molecular modelling and site-directed mutagenesis, with special focus on residue Phe(7.38) of the human 5-HT(7) receptor [Cys(7.38) in rat]. EXPERIMENTAL APPROACH Competition binding studies were performed for seven 5-HT(7) receptor ligands at three different 5-HT(7) receptors. The functional behaviour was evaluated by measuring 5-carboxytryptamine-stimulated cAMP production. Computational simulations were carried out to explore the structural bases in ligand binding observed for these compounds. KEY RESULTS Competition experiments showed a remarkable selectivity for the human receptor when compared with the rat receptor. These results indicate that mutating Cys to Phe at position 7.38 profoundly affects the binding affinities at the 5-HT(7) receptor. Computational simulations provide a structural interpretation for this key finding. Pharmacological characterization of compounds mr25020, mr25040 and mr25053 revealed a competitive antagonistic behaviour. Compounds mr22423, mr22433, mr23284 and mr25052 behaved as partial agonists. CONCLUSIONS AND IMPLICATIONS We propose that the interspecies difference in binding affinities observed for the compounds at human and rat 5-HT(7) receptors is due to the nature of the residue at position 7.38. Our molecular modelling simulations suggest that Phe(7.38) in the human receptor is integrated in the hydrophobic pocket in the central part of the binding site [Phe(6.51)-Phe(6.52)] and allows a tighter binding of the ligands when compared with the rat receptor.
Collapse
Affiliation(s)
- Thibault Varin
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UFR des Sciences Pharmaceutiques, Université de Caen Basse-NormandieCaen, France
| | - Hugo Gutiérrez-de-Terán
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de SantiagoSantiago de Compostela, Spain
| | - Marián Castro
- BioFarma Research Group, Departamento de Farmacoloxia, Facultade de Farmacia, Instituto de Farmacia Industrial, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Departamento de Farmacoloxia, Facultade de Farmacia, Instituto de Farmacia Industrial, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Frederic Fabis
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UFR des Sciences Pharmaceutiques, Université de Caen Basse-NormandieCaen, France
| | - François Dauphin
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UFR des Sciences Pharmaceutiques, Université de Caen Basse-NormandieCaen, France
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala UniversityUppsala, Sweden
| | - Alban Lepailleur
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UFR des Sciences Pharmaceutiques, Université de Caen Basse-NormandieCaen, France
| | - Pilar Perez
- Department of Pharmacology, Laboratorios EsteveBarcelona, Spain
| | - Javier Burgueño
- Department of Pharmacology, Laboratorios EsteveBarcelona, Spain
| | | | - Maria Isabel Loza
- BioFarma Research Group, Departamento de Farmacoloxia, Facultade de Farmacia, Instituto de Farmacia Industrial, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Jordi Rodrigo
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), UFR des Sciences Pharmaceutiques, Université de Caen Basse-NormandieCaen, France
| |
Collapse
|
36
|
McRobb FM, Capuano B, Crosby IT, Chalmers DK, Yuriev E. Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. J Chem Inf Model 2010; 50:626-37. [DOI: 10.1021/ci900444q] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fiona M. McRobb
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ben Capuano
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Ian T. Crosby
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - David K. Chalmers
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
37
|
Selent J, Bauer-Mehren A, López L, Loza MI, Sanz F, Pastor M. A novel multilevel statistical method for the study of the relationships between multireceptorial binding affinity profiles and in vivo endpoints. Mol Pharmacol 2010; 77:149-58. [PMID: 19903829 DOI: 10.1124/mol.109.060103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present work introduces a novel method for drug research based on the sequential building of linked multivariate statistical models, each one introducing a different level of drug description. The use of multivariate methods allows us to overcome the traditional one-target assumption and to link in vivo endpoints with drug binding profiles, involving multiple receptors. The method starts with a set of drugs, for which in vivo or clinical observations and binding affinities for potentially relevant receptors are known, and allows obtaining predictions of the in vivo endpoints highlighting the most influential receptors. Moreover, provided that the structure of the receptor binding sites is known (experimentally or by homology modeling), the proposed method also highlights receptor regions and ligand-receptor interactions that are more likely to be linked to the in vivo endpoints, which is information of high interest for the design of novel compounds. The method is illustrated by a practical application dealing with the study of the metabolic side effects of antipsychotic drugs. Herein, the method detects related receptors confirmed by experimental results. Moreover, the use of structural models of the receptor binding sites allows identifying regions and ligand-receptor interactions that are involved in the discrimination between antipsychotic drugs that show metabolic side effects and those that do not. The structural results suggest that the topology of a hydrophobic sandwich involving residues in transmembrane helices (TM) 3, 5, and 6, as well as the assembling of polar residues in TM5, are important discriminators between target/antitarget receptors. Ultimately, this will provide useful information for the design of safer compounds inducing fewer side effects.
Collapse
Affiliation(s)
- Jana Selent
- IMIM-Hospital del Mar, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Beyond rhodopsin: G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures. Methods Mol Biol 2010; 672:359-86. [PMID: 20838977 DOI: 10.1007/978-1-60761-839-3_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For quite some time, the majority of GPCR models have been based on a single template structure: dark-adapted bovine rhodopsin. The recent solution of β2AR, β1AR and adenosine A(2A) receptor crystal structures has dramatically expanded the GPCR structural landscape and provided many new insights into receptor conformation and ligand binding. They will serve as templates for the next generation of GPCR models, but also allow direct validation of previous models and computational techniques. This review summarizes key findings from the new structures, comparison of existing models to these structures and highlights new models constructed from these templates.
Collapse
|
39
|
Topiol S, Sabio M. X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 2009; 78:11-20. [PMID: 19447219 DOI: 10.1016/j.bcp.2009.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 01/19/2023]
Affiliation(s)
- Sid Topiol
- Department of Computational Chemistry, Lundbeck Research USA, Inc., 215 College Road, Paramus, NJ 07652, USA
| | | |
Collapse
|
40
|
Smits RA, Leurs R, de Esch IJP. Major advances in the development of histamine H4 receptor ligands. Drug Discov Today 2009; 14:745-53. [PMID: 19477292 DOI: 10.1016/j.drudis.2009.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/21/2009] [Accepted: 05/08/2009] [Indexed: 02/04/2023]
Abstract
The search for new and potent histamine H4 receptor ligands is leading to a steadily increasing number of scientific publications and patent applications. Several interesting and structurally diverse compounds have been found, but fierce IP competition for a preferred 2-aminopyrimidine scaffold is becoming apparent. Recent investigations into the role of the histamine H(4)R in (patho)physiology and the use of H4R ligands in in vivo disease models reveal enormous potential in the field of inflammation and allergy, among others. The development of ligands that display activity at two or more histamine receptor (HR) subtypes is another clinical opportunity that is currently being explored. Taken together, the histamine H4R field is gearing up for clinical studies and has the potential to deliver another generation of blockbuster drugs.
Collapse
Affiliation(s)
- Rogier A Smits
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Gutiérrez-de-Terán H, Correia C, Rodríguez D, Carvalho M, Brea J, Cadavid M, Loza M, Proença M, Areias F. Identification of Novel Scaffolds from an Original Chemical Library as Potential Antipsychotics. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200860198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Ortega R, Raviña E, Masaguer CF, Areias F, Brea J, Loza MI, López L, Selent J, Pastor M, Sanz F. Synthesis, binding affinity and SAR of new benzolactam derivatives as dopamine D3 receptor ligands. Bioorg Med Chem Lett 2009; 19:1773-8. [PMID: 19217777 DOI: 10.1016/j.bmcl.2009.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for their affinities at the dopamine D(1), D(2), and D(3) receptors. Some of these compounds showed high D(2) and/or D(3) affinity and selectivity over the D(1) receptor. The SAR study of these compounds revealed structural characteristics that decisively influenced their D(2) and D(3) affinities. Structural models of the complexes between some of the most representative compounds of this series and the D(2) and D(3) receptors were obtained with the aim of rationalizing the observed experimental results. Moreover, selected compounds showed moderate binding affinity on 5-HT(2A) which could contribute to reducing the occurrence of extrapyramidal side effects as potential antipsychotics.
Collapse
Affiliation(s)
- Raquel Ortega
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aranda R, Villalba K, Raviña E, Masaguer CF, Brea J, Areias F, Domínguez E, Selent J, López L, Sanz F, Pastor M, Loza MI. Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics. J Med Chem 2008; 51:6085-94. [DOI: 10.1021/jm800602w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Reyes Aranda
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Karen Villalba
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Enrique Raviña
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Christian F. Masaguer
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - José Brea
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Filipe Areias
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Eduardo Domínguez
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Jana Selent
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Laura López
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Ferran Sanz
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel Pastor
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - María I. Loza
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, and Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and Research Unit on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|