1
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
2
|
Awaji AA, Zaloa WAZE, Seleem MA, Alswah M, Elsebaei MM, Bayoumi AH, El-Morsy AM, Alfaifi MY, Shati AA, Elbehairi SEI, Almaghrabi M, Aljohani AKB, Ahmed HEA. N- and s-substituted Pyrazolopyrimidines: A promising new class of potent c-Src kinase inhibitors with prominent antitumor activity. Bioorg Chem 2024; 145:107228. [PMID: 38422592 DOI: 10.1016/j.bioorg.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed M Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
3
|
Dang XW, Duan JL, Ye E, Mao ND, Bai R, Zhou X, Ye XY. Recent advances of small-molecule c-Src inhibitors for potential therapeutic utilities. Bioorg Chem 2023; 142:106934. [PMID: 39492169 DOI: 10.1016/j.bioorg.2023.106934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Proto-oncogene tyrosine-protein kinase Src, also known as c-Src, belongs to the family of non-receptor tyrosine protein kinases (TKs) called Src kinases. It plays a crucial role in cell division, motility, adhesion, and survival in both normal cells and cancer cells by activating various signaling pathways mediated by multiple cytokines. Additionally, c-Src kinase has been implicated in osteoclasts and bone loss diseases mediated by inflammation and osteoporosis. In recent years, remarkable advancements have been achieved in the development of c-Src inhibitors, with several candidates progressing to the clinical stage. This review focuses on the research progress in several areas, including the mechanism of action, drug discovery, combination therapy, and clinical research. By presenting this information, we aim to provide researchers with convenient access to valuable insights and inspire new ideas to expedite future drug discovery programs.
Collapse
Affiliation(s)
- Xia-Wen Dang
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ji-Long Duan
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Emily Ye
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nian-Dong Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - RenRen Bai
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xinglu Zhou
- Drug Discovery, Hangzhou HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang 310018, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Malki A, Issa DA, Elbayaa RY, Ashour HM. Design and Synthesis of Novel Thioethers Derived from 1,5-Diphenyl-6- thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones as Antiangiogenic Agents. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180518112321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
In attempts to discover new antiangiogenic entities, a novel series of
thioethers derived from 6-thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidine-4(5H)ones was considered
and designed.
</P><P>
Methods: Virtual screening was carried out through docking of the compounds into the vascular
endothelial growth factor and matrix metalloproteinase-9 binding sites. Molecular docking studies
were performed using Lamarckian Genetic Algorithm. Compounds possessing lowest ligandprotein
pairwise interaction energies were synthesized and screened for their antiproliferative activities
against five cancer cell lines namely MHCC97H (liver), MDA-MB 231 (Breast), Colo205 (Colon),
A549 (lung), A498 (kidney) and IC50 values were determined for the most potent compounds.
Additionally, they were tested for their antiangiogenic activities by testing their ability to inhibit
Human Umbilical Vein Endothelial Cell (HUVEC), cord formation and migration in response to
chemoattractant.
Results:
Three compounds 2a, 2b and 5b showed significant antiangiogenic activities. The allyl
thioether 2b was the most active with chemotaxis activity data nearly comparable to that of the positive
control, TNP-470. Additionally, 2a, 2b and 5b, contrary to TNP-470, interfered with the migration
of HUVECs in response to vascular endothelial growth factor rather than endothelial cells proliferation
or cord formation. Compounds 2a, 2b and 5b were also investigated for their inhibitory
effects on MMPs to investigate the relationship between their angiogenic activity and MMPs. Results
revealed that compound 2b was the most effective MMP-9 inhibitor in this series. Additionally,
compound 2b reduced the expression levels of VEGF and pERK1/2.
Conclusion:
Our results suggest that compound 2b is considered as a promising antiangiogenic
agent by targeting VEGF and MMP-9.
Collapse
Affiliation(s)
- Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Doaa A.E Issa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rasha Y. Elbayaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hayam M.A. Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
5
|
Opening the door to the development of novel Abl kinase inhibitors. Future Med Chem 2016; 8:2143-2165. [PMID: 27774798 DOI: 10.4155/fmc-2016-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the importance of kinase activity and its relationship to the emergence and proliferation of cancer cells, due to changes in normal physiology, opened a remarkable pathway for the treatment of chronic myelogenous leukemia through intense search of drug candidates. Six Abl kinase inhibitors have received the US FDA approval as chronic myelogenous leukemia treatment, and continuous efforts in obtaining new, more effective and selective molecules are being carried out. Herein we discuss the mechanisms of Abl inhibition, structural features and ligand/protein interactions that are important for the design of new Abl kinase inhibitors. This review provides a broad overview of binding mode predictions, through molecular docking, which can be an approach to discover novel Abl kinase inhibitors.
Collapse
|
6
|
Radi M, Schneider R, Fallacara AL, Botta L, Crespan E, Tintori C, Maga G, Kissova M, Calgani A, Richters A, Musumeci F, Rauh D, Schenone S. A cascade screening approach for the identification of Bcr-Abl myristate pocket binders active against wild type and T315I mutant. Bioorg Med Chem Lett 2016; 26:3436-40. [DOI: 10.1016/j.bmcl.2016.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/17/2023]
|
7
|
Lamie PF. RETRACTED: Design, synthesis, structure-activity relationship and kinase inhibitory activity of substituted 3-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-ones. Bioorg Med Chem Lett 2016; 26:3093-3097. [PMID: 27189674 DOI: 10.1016/j.bmcl.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of the author who confirmed that the purity of some of the described compounds is below acceptable standards and thus the biochemical results reported in the paper have no validity.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Malki A, Ashour HMA, Elbayaa RY, Issa DAE, Aziz HA, Chen X. Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells. J Enzyme Inhib Med Chem 2015; 31:1286-99. [DOI: 10.3109/14756366.2015.1118686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ahmed Malki
- Biomedical Science Program, Department of Health Sciences, College of Art and Sciences, Qatar University, Doha, Qatar,
| | - Hayam M. A. Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
| | - Rasha Y. Elbayaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
- Department of Analytical & Pharmaceutical Chemistry, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Alexandria, Egypt, and
| | - Doaa A. E. Issa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon, and
| | - Hassan A. Aziz
- Biomedical Science Program, Department of Health Sciences, College of Art and Sciences, Qatar University, Doha, Qatar,
| | - Xiaozhuo Chen
- Department of Biomedical Sciences, Edison Biotechnology Institute, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA
| |
Collapse
|
9
|
Delle Monache S, Sanità P, Calgani A, Schenone S, Botta L, Angelucci A. Src inhibition potentiates antitumoral effect of paclitaxel by blocking tumor-induced angiogenesis. Exp Cell Res 2014; 328:20-31. [PMID: 25128812 DOI: 10.1016/j.yexcr.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022]
Abstract
The protein kinase Src is frequently over-activated in advanced cancers where it modulates the signaling transduction cascade of several growth factors. The feasibility of combination treatment of Src inhibitors with chemotherapy is currently under investigation. We evaluated the anti-tumoral effect of paclitaxel (PTX) in combination with S13, a tyrosine kinase inhibitor with a prevalent specificity for Src, in a hormone-insensible prostate cancer (PCa) cell model. In vivo, combination treatment with PTX and S13 reduced dramatically PCa tumor growth with a relevant difference in the density of new blood vessels with respect to control and single treatments. This reduction was determined by a concomitant impairment of endothelial cell migration and of VEGF release by cancer cells. In fact, S13, when used alone, was sufficient to reduce tubule formation in vivo, and to inhibit VEGFR2 activation and FAK expression in endothelial cells. In addition, the combination treatment determined a significant reduction in ROS production and HIF-1 stabilization in PCa cells respect to single treatments with S13 or PTX. In conclusion, Src-inhibition could be an effective therapeutic strategy aimed at supporting the anti-angiogenic action of PTX in aggressive PCa.
Collapse
Affiliation(s)
- Simona Delle Monache
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy.
| | - Patrizia Sanità
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| | - Alessia Calgani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, University of Genova, viale Benedetto XV, 3, 16132 Genova, Italy
| | - Lorenzo Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of via A. Moro, snc, 53100, Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L׳Aquila, via Vetoio Coppito, 67100 L׳Aquila, Italy
| |
Collapse
|
10
|
Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Biologically Driven Synthesis of Pyrazolo[3,4-d]pyrimidines As Protein Kinase Inhibitors: An Old Scaffold As a New Tool for Medicinal Chemistry and Chemical Biology Studies. Chem Rev 2014; 114:7189-238. [DOI: 10.1021/cr400270z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Silvia Schenone
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Marco Radi
- Dipartimento
di Farmacia, Università degli Studi di Parma Viale delle
Scienze, 27/A, 43124 Parma, Italy
| | - Francesca Musumeci
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro, 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
11
|
Zamperini C, Dreassi E, Vignaroli G, Radi M, Dragoni S, Schenone S, Musumeci F, Valoti M, Antiochia R, Botta M. CYP-dependent Metabolism of Antitumor Pyrazolo[3,4-d]pyrimidine Derivatives Is Characterized by an Oxidative Dechlorination Reaction. Drug Metab Pharmacokinet 2014; 29:433-40. [DOI: 10.2133/dmpk.dmpk-13-rg-094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Radi M, Bernardo V, Vignaroli G, Brai A, Biava M, Schenone S, Botta M. An alternative synthetic approach for the synthesis of biologically relevant 1,4-disubstituted pyrazolo[3,4-d]pyrimidines. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Vignaroli G, Zamperini C, Dreassi E, Radi M, Angelucci A, Sanità P, Crespan E, Kissova M, Maga G, Schenone S, Musumeci F, Botta M. Pyrazolo[3,4-d]pyrimidine Prodrugs: Strategic Optimization of the Aqueous Solubility of Dual Src/Abl Inhibitors. ACS Med Chem Lett 2013; 4:622-6. [PMID: 24900720 DOI: 10.1021/ml4000782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/20/2013] [Indexed: 01/10/2023] Open
Abstract
Design and synthesis of prodrugs of promising drug candidates represents a valid strategy to overcome the lack of favorable ADME properties, in particular aqueous solubility and bioavailability. We report herein the successful application of this strategy with two representative pyrazolo[3,4-d]pyrimidine derivatives (1 and 2), which led to the development of the corresponding and highly water-soluble antitumor prodrugs (7 and 8). In vitro studies confirmed a significant improvement of aqueous solubility and, for compound 8, good plasma stability, suggesting superior in vivo bioavailability. As expected, the uncleaved water-soluble prodrugs 7 and 8 showed no activity toward the enzymatic targets (c-Src and c-Abl) but revealed promising antiproliferative activity in myeloid cell lines, as a consequence of the in vitro hydrolysis of the selected solubilizing moiety, followed by the release of the active compounds (1 and 2).
Collapse
Affiliation(s)
- Giulia Vignaroli
- Dipartimentodi Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimentodi Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimentodi Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Radi
- Dipartimentodi Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle
Scienze 27/A, 43124 Parma, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche
Applicate e Biotecnologiche, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Patrizia Sanità
- Dipartimento di Scienze Cliniche
Applicate e Biotecnologiche, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Miroslava Kissova
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Schenone
- Dipartimento di Scienza Farmaceutiche, Università degli Studi di Genova, Viale benedetto
XV 3, 16132 Genova, Italy
| | - Francesca Musumeci
- Dipartimento di Scienza Farmaceutiche, Università degli Studi di Genova, Viale benedetto
XV 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimentodi Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research
and Molecular Medicine, Center for Biotechnology, College of Science
and Technology, Temple University, BioLife
Science Building, Suite 333, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
14
|
Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. ChemMedChem 2013; 8:1353-60. [PMID: 23813855 DOI: 10.1002/cmdc.201300204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 12/16/2022]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family of non-receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV-1. Herein, structure-based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in-house library of pyrazolo[3,4-d]pyrimidine derivatives, which were previously shown to be dual Abl and c-Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell-free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU-812, and one compound was found to block HIV-1 replication at sub-toxic concentrations.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Radi M, Tintori C, Musumeci F, Brullo C, Zamperini C, Dreassi E, Fallacara AL, Vignaroli G, Crespan E, Zanoli S, Laurenzana I, Filippi I, Maga G, Schenone S, Angelucci A, Botta M. Design, Synthesis, and Biological Evaluation of Pyrazolo[3,4-d]pyrimidines Active in Vivo on the Bcr-Abl T315I Mutant. J Med Chem 2013; 56:5382-94. [DOI: 10.1021/jm400233w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marco Radi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle
Scienze 27/A, 43124 Parma, Italy
| | - Cristina Tintori
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Claudio Zamperini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Giulia Vignaroli
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Samantha Zanoli
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical
and Translational
Research, IRCCS-Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Irene Filippi
- Dipartimento di Medicina Molecolare
e dello Sviluppo, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia,
Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche
Applicate e Biotecnologiche, Università dell’Aquila Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Sbarro Institute for Cancer
Research and Molecular Medicine, Center for Biotechnology, College
of Science and Technology, Temple University, BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
16
|
Peruzzotti C, Borrelli S, Ventura M, Pantano R, Fumagalli G, Christodoulou MS, Monticelli D, Luzzani M, Fallacara AL, Tintori C, Botta M, Passarella D. Probing the binding site of abl tyrosine kinase using in situ click chemistry. ACS Med Chem Lett 2013; 4:274-7. [PMID: 24900659 DOI: 10.1021/ml300394w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023] Open
Abstract
Modern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites. This report allows medicinal chemists to use protein-directed in situ click chemistry for exploring the conformational space of a ligand-binding pocket and the ability of the protein to guide its inhibitor. This approach can be a novel, valuable tool to guide drug design synthesis in the field of tyrosine kinases.
Collapse
Affiliation(s)
- Cristina Peruzzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Stella Borrelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Micol Ventura
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Rebecca Pantano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | | | - Damiano Monticelli
- Dipartimento di Scienze Alta
Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | | | - Anna Lucia Fallacara
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Cristina Tintori
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| |
Collapse
|
17
|
Abstract
c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases (TKs) involved in the development of malignancies. In particular, Bcr-Abl is the etiologic agent of chronic myeloid leukemia, where Src is also involved; the latter is hyperactivated in several solid tumors. Because of the structural homology between Src and Abl, several compounds originally synthesized as Src inhibitors have also been shown to be Abl inhibitors, useful in overcoming the onset of some types of chronic myeloid leukemia resistances, which frequently appear in the advanced phases of pathology. In recent years, the development of such compounds has been promoted by both excellent preclinical and clinical results, and by the theory that dual or multi-targeted inhibitors might be more effective than selective inhibitors. This review is an update on the most important dual inhibitors already in clinical trials and includes information regarding compounds that have appeared in the literature in recent years.
Collapse
|
18
|
Radi M, Evensen L, Dreassi E, Zamperini C, Caporicci M, Falchi F, Musumeci F, Schenone S, Lorens JB, Botta M. A combined targeted/phenotypic approach for the identification of new antiangiogenics agents active on a zebrafish model: from in silico screening to cyclodextrin formulation. Bioorg Med Chem Lett 2012; 22:5579-83. [PMID: 22853993 DOI: 10.1016/j.bmcl.2012.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
A combined targeted/phenotypic approach for the rapid identification of novel antiangiogenics with in vivo efficacy is herein reported. Considering the important role played by the tyrosine kinase c-Src in the regulation of tumour angiogenesis, we submitted our in-house library of c-Src inhibitors to a sequential screening approach: in silico screening on VEGFR2, in vitro screening on HUVEC cells, ADME profiling, formulation and in vivo testing on a zebrafish model. A promising antiangiogenic candidate able to interfere with the vascular growth of a zebrafish model at low micromolar concentration was thus identified.
Collapse
Affiliation(s)
- Marco Radi
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Computational techniques are valuable tools for the discovery of protein–protein interaction inhibitors: The 14-3-3σ case. Bioorg Med Chem Lett 2011; 21:6867-71. [DOI: 10.1016/j.bmcl.2011.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 12/30/2022]
|
20
|
Radi M, Brullo C, Crespan E, Tintori C, Musumeci F, Biava M, Schenone S, Dreassi E, Zamperini C, Maga G, Pagano D, Angelucci A, Bologna M, Botta M. Identification of potent c-Src inhibitors strongly affecting the proliferation of human neuroblastoma cells. Bioorg Med Chem Lett 2011; 21:5928-33. [DOI: 10.1016/j.bmcl.2011.07.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/08/2023]
|
21
|
Hassan GS, Kadry HH, Abou-Seri SM, Ali MM, Mahmoud AEED. Synthesis and in vitro cytotoxic activity of novel pyrazolo[3,4-d]pyrimidines and related pyrazole hydrazones toward breast adenocarcinoma MCF-7 cell line. Bioorg Med Chem 2011; 19:6808-17. [PMID: 22000322 DOI: 10.1016/j.bmc.2011.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/12/2011] [Accepted: 09/20/2011] [Indexed: 01/07/2023]
Abstract
New series of pyrazolo[3,4-d]pyrimidines (7a-e and 13a-d) and pyrazole hydrazones 17a-d were synthesized and evaluated for their antiproliferative activity against human breast adenocarcinoma MCF-7 cell line. Most of the tested compounds exploited potent to moderate growth inhibitory activity, in particular compound 7e exhibited superior potency to the reference drug cisplatin (IC(50)=7.60 and 13.29 μM, respectively). The antitumor activity of the new compounds was accompanied by significant increase in the activity of superoxide dismutase with concomitant decrease in the activities of catalase and glutathione peroxidase and reduced glutathione level. Accordingly, the overproduction of hydrogen peroxide, nitric oxide and other free radicals allowed reactive oxygen species (ROS)-mediated tumor cells death, as monitored by reduction in the synthesis of protein and nucleic acids.
Collapse
Affiliation(s)
- Ghaneya Sayed Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
22
|
Bocci G, Fioravanti A, La Motta C, Orlandi P, Canu B, Di Desidero T, Mugnaini L, Sartini S, Cosconati S, Frati R, Antonelli A, Berti P, Miccoli P, Da Settimo F, Danesi R. Antiproliferative and proapoptotic activity of CLM3, a novel multiple tyrosine kinase inhibitor, alone and in combination with SN-38 on endothelial and cancer cells. Biochem Pharmacol 2011; 81:1309-16. [PMID: 21459081 DOI: 10.1016/j.bcp.2011.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
|
23
|
Radi M, Dreassi E, Brullo C, Crespan E, Tintori C, Bernardo V, Valoti M, Zamperini C, Daigl H, Musumeci F, Carraro F, Naldini A, Filippi I, Maga G, Schenone S, Botta M. Design, Synthesis, Biological Activity, and ADME Properties of Pyrazolo[3,4-d]pyrimidines Active in Hypoxic Human Leukemia Cells: A Lead Optimization Study. J Med Chem 2011; 54:2610-26. [DOI: 10.1021/jm1012819] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marco Radi
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Chiara Brullo
- Dipartimento di Scienze Farmaceutiche, University of Genoa, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Cristina Tintori
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Vincenzo Bernardo
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Massimo Valoti
- Dipartimento di Neuroscienze, University of Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Henry Daigl
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | - Francesca Musumeci
- Dipartimento di Scienze Farmaceutiche, University of Genoa, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Fabio Carraro
- Dipartimento di Fisiologia, Sezione di Neuroimmunofisiologia, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Antonella Naldini
- Dipartimento di Fisiologia, Sezione di Neuroimmunofisiologia, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Irene Filippi
- Dipartimento di Fisiologia, Sezione di Neuroimmunofisiologia, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Silvia Schenone
- Dipartimento di Scienze Farmaceutiche, University of Genoa, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
24
|
|
25
|
Dreassi E, Zizzari AT, Mori M, Filippi I, Belfiore A, Naldini A, Carraro F, Santucci A, Schenone S, Botta M. 2-Hydroxypropyl-β-cyclodextrin strongly improves water solubility and anti-proliferative activity of pyrazolo[3,4-d]pyrimidines Src-Abl dual inhibitors. Eur J Med Chem 2010; 45:5958-64. [DOI: 10.1016/j.ejmech.2010.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/04/2010] [Accepted: 09/28/2010] [Indexed: 12/25/2022]
|
26
|
Radi M, Crespan E, Falchi F, Bernardo V, Zanoli S, Manetti F, Schenone S, Maga G, Botta M. Design and synthesis of thiadiazoles and thiazoles targeting the Bcr-Abl T315I mutant: from docking false positives to ATP-noncompetitive inhibitors. ChemMedChem 2010; 5:1226-31. [PMID: 20509136 DOI: 10.1002/cmdc.201000066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marco Radi
- Dipartimento Farmaco Chimico Tecnologico, University of Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schenone S, Brullo C, Musumeci F, Botta M. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010; 19:931-45. [PMID: 20557276 DOI: 10.1517/13543784.2010.499898] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD c-Src and Bcr-Abl are two non-receptor or cytoplasmic tyrosine kinases (TKs) that play important roles in the development of solid and hematological malignancies. Indeed, Src is overexpressed or hyperactivated in a variety of solid tumors, while Bcr-Abl is the causative agent of chronic myeloid leukemia (CML), where Src is also involved. The two enzymes share significant sequence homology and remarkable structural resemblance. AREAS COVERED IN THIS REVIEW ATP-competitive compounds originally developed as Src inhibitors, showed to be also potent Abl inhibitors. Dasatinib, the first dual Src/Abl inhibitor approved by the US FDA in 2006 for the treatment of imatinib-resistant CML, is currently being tested in several clinical trials for the treatment of different solid tumors. SKI-606 and AZD0530 are two other important dual Src/Abl inhibitors extensively tested in animal models and in clinical trials, but not entered into therapy yet. WHAT THE READER WILL GAIN In this review we will report the latest results regarding dasatinib, SKI-606 and AZD0530, but also the knowledge on new compounds that have appeared in the literature in the last few years, including AP24163, AP24534, XL228, DC2036. We will focus on the most recent clinical trials or on preclinical studies that are in progress on these small-molecule TK inhibitors that represent a targeted therapy with high potential against cancer. TAKE HOME MESSAGE Molecularly targeted therapies, including the inhibition of specific TKs hyperactivated or overexpressed in many human cancers, could be less toxic than the classical non-specific cytotoxic chemotherapeutic agents; they could offer important therapeutic effects, especially if used in association with other agents such as monoclonal antibodies.
Collapse
Affiliation(s)
- Silvia Schenone
- University of Genoa, Dipartimento di Scienze Farmaceutiche, Viale Benedetto VX, Genoa, Italy.
| | | | | | | |
Collapse
|
28
|
Santucci MA, Mancini M, Corradi V, lacobucci I, Martinelli G, Botta M, Schenone S. New SRC/ABL inhibitors for chronic myeloid leukemia therapy show selectivity for T315I ABL mutant CD34+ cells. Invest New Drugs 2009; 28:876-8. [DOI: 10.1007/s10637-009-9294-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/16/2009] [Indexed: 01/07/2023]
|