1
|
Kijewska M, Wołczański G, Kosson P, Wieczorek R, Lisowski M, Stefanowicz P. Stapling of leu-enkephalin analogs with bifunctional reagents for prolonged analgesic activity. Chem Commun (Camb) 2024; 60:3023-3026. [PMID: 38356394 DOI: 10.1039/d3cc06345c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The design and synthesis of leu-enkephalin analogs by replacing the glycine residues with N-(2-thioethyl)glycines and opening the cyclisation potential is presented. The cyclization (stapling) was achieved using bifunctional reagents (hexafluorobenzene and trithiocyanuric acid derivatives). The CD conformational studies of the stapled analogs suggest that the peptides adopt the type I β-turn conformation, which is in agreement with the theoretical analysis. The analog containing a trithiocyanuric acid derivative with a benzyl substituent shows potent analgesic activity.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Kosson
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warszawa, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
2
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Sgorbati C, Lo Presti E, Bergamaschi G, Sani M, Volonterio A. Solid-Phase Synthesis of Gly-Ψ[CH(CF 3)NH]-Peptides. J Org Chem 2021; 86:9225-9232. [PMID: 34081467 PMCID: PMC8279481 DOI: 10.1021/acs.joc.1c00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The solid-phase synthesis
of Gly-Ψ[CH(CF3)NH]-peptides
is presented. In order to achieve this goal, the synthesis of Gly-Ψ[CH(CF3)NH]-dipeptides having the C-terminus unprotected, the N-terminus
protected as Fmoc- or Teoc-, and possibly side chain functionalities
protected with acid-labile protecting groups has been developed. A
selected small library of six peptidomimetics, encompassing analogues
of biological relevant peptides, have been obtained in high purity.
Collapse
Affiliation(s)
- Clara Sgorbati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Eliana Lo Presti
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Greta Bergamaschi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
4
|
Karad SN, Pal M, Crowley RS, Prisinzano TE, Altman RA. Synthesis and Opioid Activity of Tyr 1 -ψ[(Z)CF=CH]-Gly 2 and Tyr 1 -ψ[(S)/(R)-CF 3 CH-NH]-Gly 2 Leu-enkephalin Fluorinated Peptidomimetics. ChemMedChem 2017; 12:571-576. [PMID: 28296145 PMCID: PMC5486982 DOI: 10.1002/cmdc.201700103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Indexed: 12/16/2022]
Abstract
We describe the design, synthesis, and opioid activity of fluoroalkene (Tyr1 -ψ[(Z)CF=CH]-Gly2 ) and trifluoroethylamine (Tyr1 -ψ[(S)/(R)-CF3 CH-NH]-Gly2 ) analogues of the endogenous opioid neuropeptide, Leu-enkephalin. The fluoroalkene peptidomimetic exhibited low nanomolar functional activity (5.0±2 nm and 60±15 nm for δ- and μ-opioid receptors, respectively) with a μ/δ-selectivity ratio that mimics that of the natural peptide. However, the trifluoroethylamine peptidomimetics, irrespective of stereochemistry, did not activate the opioid receptors, which suggest that bulky CF3 substituents are not tolerated at this position.
Collapse
Affiliation(s)
- Somnath Narayan Karad
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Mohan Pal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Rachel S Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Ryan A Altman
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| |
Collapse
|
5
|
Anomeric effects in fluoro and trifluoromethyl piperidines: a computational study of conformational preferences and hydration. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1491-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Tambaro S, Reali R, Volonterio A, Zanda M, Olimpieri F, Pinna GA, Lazzari P. NESS002ie: A new fluorinated thiol endopeptidase inhibitor with antinociceptive activity in an animal model of persistent pain. Pharmacol Biochem Behav 2013; 110:137-44. [DOI: 10.1016/j.pbb.2013.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 11/16/2022]
|
7
|
Meanwell NA. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J Med Chem 2011; 54:2529-91. [DOI: 10.1021/jm1013693] [Citation(s) in RCA: 2094] [Impact Index Per Article: 149.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicholas A. Meanwell
- Department of Medicinal Chemistry, Bristol-Myers Squibb Pharmaceutical Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
8
|
Gaudette F, Raeppel S, Nguyen H, Beaulieu N, Beaulieu C, Dupont I, Macleod AR, Besterman JM, Vaisburg A. Identification of potent and selective VEGFR receptor tyrosine kinase inhibitors having new amide isostere headgroups. Bioorg Med Chem Lett 2010; 20:848-52. [PMID: 20071170 DOI: 10.1016/j.bmcl.2009.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
A novel series of malonamide-type dual VEGFR2/c-Met inhibitors in which one of the amide bonds was replaced by an amide isostere-a trifluoroethylamine unit, was designed, synthesized, and evaluated for their enzymatic and cellular inhibition of VEGFR2 and c-Met enzymes. Optimization of these molecular entities resulted in identification of potent and selective inhibitors of VEGFR2 enzyme.
Collapse
Affiliation(s)
- Frédéric Gaudette
- Department of Medicinal Chemistry, MethylGene Inc, 7220 rue Frederick-Banting, Montréal, QC, Canada H4S 2A1
| | | | | | | | | | | | | | | | | |
Collapse
|