1
|
Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem Rev 2020; 120:7592-7641. [PMID: 32609495 PMCID: PMC8253488 DOI: 10.1021/acs.chemrev.0c00215] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.
Collapse
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Zi M, Liu F, Wu D, Li K, Zhang D, Zhu C, Zhang Z, Li L, Zhang C, Xie M, Lin J, Zhang J, Jin Y. Discovery of 6-Arylurea-2-arylbenzoxazole and 6-Arylurea-2-arylbenzimidazole Derivatives as Angiogenesis Inhibitors: Design, Synthesis and in vitro Biological Evaluation. ChemMedChem 2019; 14:1291-1302. [PMID: 31131561 DOI: 10.1002/cmdc.201900216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/22/2019] [Indexed: 12/15/2022]
Abstract
We embarked on a structural optimization campaign aimed at the discovery of novel anti-angiogenesis agents with previously reported imidazole kinase inhibitors as a lead compound. A library of 29 compounds was synthesized. Several title compounds exhibited selective inhibitory activities against vascular endothelial growth factor receptor 2 (VEGFR-2) over epidermal growth factor receptor (EGFR) kinase; these compounds also displayed selective and potent antiproliferative activity against three cancer cell lines. The newly synthesized compounds were evaluated for anti-angiogenesis activity by chick chorioallantoic membrane (CAM) assay. Among them, 1-(2-(2-chlorophenyl)benzo[d]oxazol-5-yl)-3-(4-(trifluoromethoxy)phenyl)urea (compound 5 n) showed the most potent anti-angiogenesis capacity, efficient cytotoxic activities (in vitro against human umbilical vein endothelial cells (HUVEC), H1975, A549, and HeLa cell lines, with respective IC50 values of 8.46, 1.40, 7.61, and 0.28 μm), and an acceptable level of VEGFR-2 kinase inhibition (IC50 =0.25 μm). Molecular docking analysis revealed 5 n to be a type II inhibitor of VEGFR-2 kinase. In general, these results indicate that these 6-arylurea-2-arylbenzoxazole/benzimidazole derivatives are promising inhibitors of VEGFR-2 kinase for potential development into anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Mengli Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Feifei Liu
- Laboratory of Molecular Genetics of Aging and Tumors, Medical School, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Di Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Ke Li
- Biomedical Department, Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Da Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Changcheng Zhu
- Institute of Drug Research and Development, Kunming Pharmaceutical Corporation, Kunming, 650100, P.R. China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650011, P.R. China
| | - Linghua Li
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650011, P.R. China
| | - Conghai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Mingjin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumors, Medical School, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|
3
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
4
|
Zheng YL, Newman SG. Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00884] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Zilifdar F, Foto E, Ertan-Bolelli T, Aki-Yalcin E, Yalcin I, Diril N. Biological evaluation and pharmacophore modeling of some benzoxazoles and their possible metabolites. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Zilifdar
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Egemen Foto
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Tugba Ertan-Bolelli
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Esin Aki-Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Ismail Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Nuran Diril
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| |
Collapse
|
6
|
Konkle ME, Blobaum AL, Moth CW, Prusakiewicz JJ, Xu S, Ghebreselasie K, Akingbade D, Jacobs AT, Rouzer CA, Lybrand TP, Marnett LJ. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics. Biochemistry 2015; 55:348-59. [PMID: 26704937 PMCID: PMC4721528 DOI: 10.1021/acs.biochem.5b01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings.
Collapse
Affiliation(s)
- Mary E Konkle
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Anna L Blobaum
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Christopher W Moth
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Jeffery J Prusakiewicz
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Shu Xu
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Kebreab Ghebreselasie
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Dapo Akingbade
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Aaron T Jacobs
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Carol A Rouzer
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Terry P Lybrand
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Lawrence J Marnett
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| |
Collapse
|
7
|
Paraskevopoulos G, Krátký M, Mandíková J, Trejtnar F, Stolaříková J, Pávek P, Besra G, Vinšová J. Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorg Med Chem 2015; 23:7292-301. [PMID: 26526729 DOI: 10.1016/j.bmc.2015.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023]
Abstract
Inspired by the high antituberculous activity of novel nitro-substituted derivatives and based on promising predicted ADMET properties we have synthesized a series of 33 salicylanilides containing nitro-group in their salicylic part and evaluated them for their in vitro antimycobacterial, antimicrobial and antifungal activities. The presence of nitro-group in position 4 of the salicylic acid was found to be beneficial and the resulting molecules exhibited minimum inhibitory concentrations (MICs) ranging from 2 to 32 μM against Mycobacterium tuberculosis. The best activity was found for 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide (MIC=2 μM). 4-Nitrosalicylanilides were also found to be active against all Staphylococcus species tested while for MRSA strain 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide's MIC was 0.98 μM. None of the nitrosalicylanilides was active against Enterococcus sp. J 14365/08 and no considerable activity was found against Gram-negative bacteria or fungi. The hepatotoxicity of all nitrosalicylanilides was found to be in the range of their MICs for HepG2 cells.
Collapse
Affiliation(s)
- Georgios Paraskevopoulos
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Krátký
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Mandíková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00 Ostrava, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jarmila Vinšová
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Uddin MJ, Elleman AV, Ghebreselasie K, Daniel CK, Crews BC, Nance KD, Huda T, Marnett LJ. Design of Fluorine-Containing 3,4-Diarylfuran-2(5H)-ones as Selective COX-1 Inhibitors. ACS Med Chem Lett 2014; 5:1254-8. [PMID: 25408841 DOI: 10.1021/ml500344j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/12/2014] [Indexed: 01/29/2023] Open
Abstract
We report the design and synthesis of fluorine-containing cyclooxygenase-1 (COX-1)-selective inhibitors to serve as prototypes for the development of a COX-1-targeted imaging agent. Deletion of the SO2CH3 group of rofecoxib switches the compound from a COX-2- to a COX-1-selective inhibitor, providing a 3,4-diarylfuran-2(5H)-one scaffold for structure-activity relationship studies of COX-1 inhibition. A wide range of fluorine-containing 3,4-diarylfuran-2(5H)-ones were designed, synthesized, and tested for their ability to selectively inhibit COX-1 in purified protein and human cancer cell assays. Compounds containing a fluoro-substituent on the C-3 phenyl ring and a methoxy-substituent on the C-4 phenyl ring of the 3,4-diarylfuran-2(5H)-one scaffold were the best COX-1-selective agents of those evaluated, exhibiting IC50s in the submicromolar range. These compounds provide the foundation for development of an agent to facilitate radiologic imaging of ovarian cancer expressing elevated levels of COX-1.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna V. Elleman
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kellie D. Nance
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Tamanna Huda
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J. Marnett
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|