1
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
2
|
Dougherty JP, Wolff BS, Cullen MJ, Saligan LN, Gershengorn MC. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue. Pharmacol Res 2017; 124:1-8. [PMID: 28720519 DOI: 10.1016/j.phrs.2017.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 02/08/2023]
Abstract
Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans.
Collapse
Affiliation(s)
- John P Dougherty
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Brian S Wolff
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Mary J Cullen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA,.
| | - Marvin C Gershengorn
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Effect of L-pGlu-(1-benzyl)-l-His-l-Pro-NH 2 against in-vitro and in-vivo models of cerebral ischemia and associated neurological disorders. Biomed Pharmacother 2016; 84:1256-1265. [PMID: 27810782 DOI: 10.1016/j.biopha.2016.10.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/28/2023] Open
Abstract
Central nervous system plays a vital role in regulation of most of biological functions which are abnormally affected in various disorders including cerebral ischemia, Alzheimer's and Parkinson's (AD and PD) worldwide. Cerebral stroke is an extremely fatal and one of the least comprehensible neurological disorders due to limited availability of prospective clinical approaches and therapeutics. Since, some endogenous peptides like thyrotropin-releasing hormone have shown substantial neuroprotective potential, hence present study evaluates the newer thyrotropin-releasing hormone (TRH) analogue L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 for its neuroprotective effects against oxygen glucose deprivation (OGD), glutamate and H2O2 induced injury in pheochromocytoma cell lines (PC-12 cells) and in-vivo ischemic injury in mice. Additionally, the treatment was further analyzed with respect to models of AD and PD in mice. Cerebral ischemia was induced by clamping both bilateral common carotid arteries for ten minutes. Treatment was administered to the mice five minute after restoration of blood supply to brain. Consequential changes in neurobehavioural, biochemical and histological parameters were assessed after a week. L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 showed significant reduction in glutamate, H2O2 and OGD -induced cell death in concentration and time dependent manner. Moreover, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 resulted in a substantial reduction in CA1 (Cornus Ammonis 1) hippocampal neuronal cell death, inflammatory cytokines, TNF-α, IL-6 and oxidative stress in hippocampus. In addition, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 was found to be protective in two acute models of AD and PD as well these findings demonstrate the neuroprotective potential of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 in cerebral ischemia and other diseases, which may be mediated through reduction of excitotoxicity, oxidative stress and inflammation.
Collapse
|
4
|
Meena CL, Thakur A, Nandekar PP, Sharma SS, Sangamwar AT, Jain R. Synthesis and biology of ring-modified l-Histidine containing thyrotropin-releasing hormone (TRH) analogues. Eur J Med Chem 2016; 111:72-83. [PMID: 26854379 DOI: 10.1016/j.ejmech.2016.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) analogues bearing halogen groups (Cl, Br and I) at the C-2 and/or C-5 position, and the alkyl group (CH3, C2H5, C3H7, CH2C6H5) at the N-1 position of the imidazole ring of the central histidine residue were synthesized and evaluated for the receptor binding, calcium mobilization (FLIPR), and IP-1 assay at the HEK mTRHR1 and HEK mTRHR2 expressing cell lines. The most promising analogue 7k showed 925-fold selectivity for HEK mTRH-R2 receptor subtype in the IP-1 assay, 272-fold selectivity for HEK mTRH-R2 receptor subtype in the FLIPR assay, and 21-fold receptor binding specificity at HEK TRH-R2 receptor subtype. The peptide 7k was evaluated in vitro in a brain membrane competitive binding assay, and for stability analysis in the presence of TRH-DE, in vivo. The analogue 7k showed decrease in the sleeping time by more than 76% in a pentobarbital-induced sleeping assay, and showed comparatively less elevation in the TSH level in the blood, in vivo. The computational homology modeling of TRH-R1 and TRH-R2 and docking study with the most potent peptide 7k provide impetus to design CNS specific TRH analogues.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Avinash Thakur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Prajwal P Nandekar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Abhay T Sangamwar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
5
|
Meena CL, Thakur A, Nandekar PP, Sangamwar AT, Sharma SS, Jain R. Synthesis of CNS active thyrotropin-releasing hormone (TRH)-like peptides: Biological evaluation and effect on cognitive impairment induced by cerebral ischemia in mice. Bioorg Med Chem 2015. [DOI: 10.1016/j.bmc.2015.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Meena CL, Ingole S, Rajpoot S, Thakur A, Nandeker PP, Sangamwar AT, Sharma SS, Jain R. Discovery of a low affinity thyrotropin-releasing hormone (TRH)-like peptide that exhibits potent inhibition of scopolamine-induced memory impairment in mice. RSC Adv 2015; 5:56872-56884. [PMID: 26191403 PMCID: PMC4501038 DOI: 10.1039/c5ra06935a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TRH-like peptides were synthesized in which the critical N-terminus residue L-pGlu was replaced with various heteroaromatic rings, and the central residue histidine with 1-alkyl-L-histidines. All synthesized TRH-like peptides were evaluated in vitro as agonists in HEK mTRH-R1 and HEK mTRH-R2 cell lines, an expressing receptor binding assay (IC50), and cell signaling assay (EC50). The analeptic potential of the synthesized peptides was evaluated in vivo by using the antagonism of a pentobarbital-induced sleeping time. The peptides 6a, 6c and 6e were found to activate TRH-R2 with potencies (EC50) of 0.002 μM, 0.28 μM and 0.049 μM, respectively. In contrast, for signaling activation of TRH-R1, the same peptides required higher concentration of 0.414 μM, 50 μM and 19.1 μM, respectively in the FLIPR assay. The results showed that these peptides were 207, 178 and 389-fold selective towards TRH-R2 receptor subtype. In the antagonism of a pentobarbital-induced sleeping time assay, peptide 6c showed a 58.5% reduction in sleeping time. The peptide 6c exhibited high stability in rat blood plasma, a superior effect on the scopolamine-induced cognition impairment mice model, safe effects on the cardiovascular system, and general behavior using a functional observation battery (FOB).
Collapse
Affiliation(s)
- Chhuttan L. Meena
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Shubdha Ingole
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Satyendra Rajpoot
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Avinash Thakur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Prajwal P. Nandeker
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Abhay T. Sangamwar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| |
Collapse
|
7
|
Wozniak DR, Quinnell TG. Unmet needs of patients with narcolepsy: perspectives on emerging treatment options. Nat Sci Sleep 2015; 7:51-61. [PMID: 26045680 PMCID: PMC4447169 DOI: 10.2147/nss.s56077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The treatment options currently available for narcolepsy are often unsatisfactory due to suboptimal efficacy, troublesome side effects, development of drug tolerance, and inconvenience. Our understanding of the neurobiology of narcolepsy has greatly improved over the last decade. This knowledge has not yet translated into additional therapeutic options for patients, but progress is being made. Some compounds, such as histaminergic H3 receptor antagonists, may prove useful in symptom control of narcolepsy. The prospect of finding a cure still seems distant, but hypocretin replacement therapy offers some promise. In this narrative review, we describe these developments and others which may yield more effective narcolepsy treatments in the future.
Collapse
Affiliation(s)
- Dariusz R Wozniak
- Respiratory Support and Sleep Centre, Papworth Hospital, Cambridge, UK
| | | |
Collapse
|
8
|
Bagul P, Khomane KS, Kesharwani SS, Pragyan P, Nandekar PP, Meena CL, Bansal AK, Jain R, Tikoo K, Sangamwar AT. Intestinal transport of TRH analogs through PepT1: the role ofin silicoandin vitromodeling. J Mol Recognit 2014; 27:609-17. [DOI: 10.1002/jmr.2385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Pravin Bagul
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Kailas S. Khomane
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Siddharth S. Kesharwani
- Department of Pharmacoinformatics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Preeti Pragyan
- Department of Pharmacoinformatics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Prajwal P. Nandekar
- Department of Pharmacoinformatics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Chhuttan Lal Meena
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Arvind K. Bansal
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| | - Abhay T. Sangamwar
- Department of Pharmacoinformatics; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67, S.A.S. Nagar Mohali Punjab 160062 India
| |
Collapse
|
9
|
Quintanar JL, Guzmán-Soto I. Hypothalamic neurohormones and immune responses. Front Integr Neurosci 2013; 7:56. [PMID: 23964208 PMCID: PMC3741963 DOI: 10.3389/fnint.2013.00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/16/2013] [Indexed: 01/19/2023] Open
Abstract
The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.
Collapse
Affiliation(s)
- J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes Aguascalientes, México
| | | |
Collapse
|
10
|
Khomane KS, Nandekar PP, Wahlang B, Bagul P, Shaikh N, Pawar YB, Meena CL, Sangamwar AT, Jain R, Tikoo K, Bansal AK. Mechanistic Insights into PEPT1-Mediated Transport of a Novel Antiepileptic, NP-647. Mol Pharm 2012; 9:2458-68. [DOI: 10.1021/mp200672d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kailas S. Khomane
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Prajwal P. Nandekar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Banrida Wahlang
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Pravin Bagul
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Naeem Shaikh
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Yogesh B. Pawar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Chhuttan Lal Meena
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Abhay T. Sangamwar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Rahul Jain
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - K. Tikoo
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Arvind K. Bansal
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| |
Collapse
|
11
|
Khomane KS, Meena CL, Jain R, Bansal AK. Novel thyrotropin-releasing hormone analogs: a patent review. Expert Opin Ther Pat 2012; 21:1673-91. [PMID: 22017410 DOI: 10.1517/13543776.2011.623127] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The potential therapeutic applications of thyrotropin-releasing hormone (TRH) have attracted attention, based on its broad-spectrum neuropharmacological action rather than its endocrine properties. These central nervous system (CNS)-mediated effects provide the rationale for use of TRH and its analogs in the treatment of brain and spinal injury, and CNS disorders like schizophrenia, Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis, Parkinson's disease, depression, shock and ischemia. AREAS COVERED This review summarizes the patent literature and advances in the discovery and development of novel TRH analogs over the past 20 years. It provides a comprehensive overview of the development of new TRH analogs, giving emphasis to their pharmaceutical profile. EXPERT OPINION The use of TRH in the treatment of various CNS disorders has been proven clinically. However, TRH itself is a poor drug candidate due to its short plasma half-life (5 min), poor biopharmaceutical properties (low intestinal and CNS permeability) and endocrine side effect. Nevertheless, researchers have come up with metabolically stable, more potent and selective TRH analogs and prodrugs. Taltirelin, one of the TRH analogs, has been approved under the trade name of Ceredist(®) in Japan for the treatment of spinocerebellar degeneration. Several other TRH analogs are in various stages of preclinical or clinical development.
Collapse
Affiliation(s)
- Kailas S Khomane
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Pharmaceutics, Mohali, Punjab, India
| | | | | | | |
Collapse
|