1
|
Spatially-resolved pharmacokinetic/pharmacodynamic modelling of bystander effects of a nitrochloromethylbenzindoline hypoxia-activated prodrug. Cancer Chemother Pharmacol 2021; 88:673-687. [PMID: 34245333 DOI: 10.1007/s00280-021-04320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.
Collapse
|
2
|
Amino DSA analogues as payloads for antibody-drug conjugates with multiple sites for conjugation. Initial studies and solid phase synthesis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Jukes Z, Morais GR, Loadman PM, Pors K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov Today 2020; 26:577-584. [PMID: 33232841 DOI: 10.1016/j.drudis.2020.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval. In this review, we provide an overview of the most promising strategies currently used and include both tumour-targeted prodrug approaches and antibody-directed technologies.
Collapse
Affiliation(s)
- Zoë Jukes
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
4
|
Tercel M, Lee HH, Mehta SY, Youte Tendoung JJ, Bai SY, Liyanage HDS, Pruijn FB. Influence of a Basic Side Chain on the Properties of Hypoxia-Selective Nitro Analogues of the Duocarmycins: Demonstration of Substantial Anticancer Activity in Combination with Irradiation or Chemotherapy. J Med Chem 2017. [PMID: 28644035 DOI: 10.1021/acs.jmedchem.7b00563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new series of nitro analogues of the duocarmycins was prepared and evaluated for hypoxia-selective anticancer activity. The compounds incorporate 13 different amine-containing side chains designed to bind in the minor groove of DNA while spanning a wide range of base strength from pKa 9.64 to 5.24. The most favorable in vitro properties were associated with strongly basic side chains, but the greatest in vivo antitumor activity was found for compounds containing a weakly basic morpholine. This applies to single-agent activity and for activity in combination with irradiation or chemotherapy (gemcitabine or docetaxel). In combination with a single dose of γ irradiation 50 at 42 μmol/kg eliminated detectable clonogens in some SiHa cervical carcinoma xenografts, and in combination with gemcitabine using a well-tolerated multidose schedule, the same compound caused regression of all treated A2780 ovarian tumor xenografts. In the latter experiment, three of seven animals receiving the combination treatment were completely tumor free at day 100.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Ho H Lee
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sunali Y Mehta
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jean-Jacques Youte Tendoung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sally Y Bai
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - H D Sarath Liyanage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Giddens AC, Lee HH, Lu GL, Miller CK, Guo J, Lewis Phillips GD, Pillow TH, Tercel M. Analogues of DNA minor groove cross-linking agents incorporating aminoCBI, an amino derivative of the duocarmycins: Synthesis, cytotoxicity, and potential as payloads for antibody–drug conjugates. Bioorg Med Chem 2016; 24:6075-6081. [DOI: 10.1016/j.bmc.2016.09.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
|
6
|
Tercel M, Pruijn FB, O'Connor PD, Liyanage HDS, Atwell GJ, Alix SM. Mechanism of action of AminoCBIs: highly reactive but highly cytotoxic analogues of the duocarmycins. Chembiochem 2014; 15:1998-2006. [PMID: 25087870 DOI: 10.1002/cbic.201402256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 11/09/2022]
Abstract
Duocarmycins are highly cytotoxic natural products that have potential for development into anticancer agents. Herein we describe proposed but previously unidentified NH analogues of the DNA-alkylating subunit and characterise these by solvolysis studies, NMR and computational modelling. These compounds are shown to be the exclusive intermediates in the solvolysis of their seco precursors and to possess very similar structural features to the widely studied O-based analogues, apart from an unusually high basicity. The measured pKa of 10.5 implies that the NH compounds are fully protonated under physiological conditions. Remarkably, their extremely high reactivity (calculated hydrolysis rate 10(8) times higher for protonated NH compared to the neutral O analogue) is still compatible with potent cytotoxicity, provided the active species is formed in the presence of cells. These surprising findings are of relevance to the design of duocarmycin-based tumour-selective therapies.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand).
| | | | | | | | | | | |
Collapse
|
7
|
Tercel M, McManaway SP, Liyanage HDS, Pruijn FB. Preparation and properties of clickable amino analogues of the duocarmycins: factors that affect the efficiency of their fluorescent labelling of DNA. ChemMedChem 2014; 9:2193-206. [PMID: 25044224 DOI: 10.1002/cmdc.201402169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Herein we report the synthesis of three DNA-alkylating amino analogues of the duocarmycins that carry an alkyne functional group suitable for copper-catalysed click chemistry. The alkyne-containing substituents are connected via a side chain position which projects away from the minor groove, and have only a small effect on DNA alkylation and cytotoxicity. The efficiency of click reactions with fluorophore azides was studied using alkylated ctDNA by analysing the adenine adducts produced after thermal depurination. Click reactions "on DNA" were sensitive to steric effects (tether length to the alkyne) and, surprisingly, to the nature of the fluorophore azide. With the best combination of click partners and reagents, adducts could be detected in the nuclei of treated cells by microscopy or flow cytometry, provided that an appropriate detergent (Triton X-100 and not Tween 20) was used for permeabilisation. The method is sensitive enough to detect adducts at physiologically relevant concentrations, and could have application in the development of nitro analogues of the duocarmycins as hypoxia-activated anticancer prodrugs.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: (+64) 9373-7502.
| | | | | | | |
Collapse
|
8
|
Hunter FW, Jaiswal JK, Hurley DG, Liyanage HDS, McManaway SP, Gu Y, Richter S, Wang J, Tercel M, Print CG, Wilson WR, Pruijn FB. The flavoprotein FOXRED2 reductively activates nitro-chloromethylbenzindolines and other hypoxia-targeting prodrugs. Biochem Pharmacol 2014; 89:224-35. [PMID: 24632291 DOI: 10.1016/j.bcp.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 11/28/2022]
Abstract
The nitro-chloromethylbenzindoline prodrug SN29428 has been rationally designed to target tumour hypoxia. SN29428 is metabolised to a DNA minor groove alkylator via oxygen-sensitive reductive activation initiated by unknown one-electron reductases. The present study sought to identify reductases capable of activating SN29428 in tumours. Expression of candidate reductases in cell lines was modulated using forced expression and, for P450 (cytochrome) oxidoreductase (POR), by zinc finger nuclease-mediated gene knockout. Affymetrix microarray mRNA expression of flavoreductases was correlated with SN29428 activation in a panel of 23 cancer cell lines. Reductive activation and cytotoxicity of prodrugs were measured using mass spectrometry and antiproliferative assays, respectively. SN29428 activation under hypoxia was strongly attenuated by the pan-flavoprotein inhibitor diphenyliodonium, but less so by knockout of POR suggesting other flavoreductases contribute. Forced expression of 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), as well as POR, increased activation of SN29428 in hypoxic HCT 116 cells. SN29428 activation strongly correlated with expression of POR and also FAD-dependent oxidoreductase domain containing 2 (FOXRED2), in cancer cell lines. This association persisted after removing the effect of POR enzyme activity using first-order partial correlation. Forced expression of FOXRED2 increased SN29428 activation and cytotoxicity in hypoxic HEK293 cells and also increased activation of hypoxia-targeted prodrugs PR-104A, tirapazamine and SN30000, and increased cytotoxicity of the clinical-stage prodrug TH-302. Thus this study has identified three flavoreductases capable of enzymatically activating SN29428, one of which (FOXRED2) has not previously been implicated in xenobiotic metabolism. These results will inform future development of biomarkers predictive of SN29428 sensitivity.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish K Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel G Hurley
- Department of Molecular Medicine and Pathology and Bioinformatics Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - H D Sarath Liyanage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah P McManaway
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Susan Richter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jingli Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology and Bioinformatics Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
9
|
Stevenson RJ, Denny WA, Tercel M, Pruijn FB, Ashoorzadeh A. Nitro seco analogues of the duocarmycins containing sulfonate leaving groups as hypoxia-activated prodrugs for cancer therapy. J Med Chem 2012; 55:2780-802. [PMID: 22339090 DOI: 10.1021/jm201717y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of 19 (5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl sulfonate prodrugs containing sulfonate leaving groups and 7-substituted electron-withdrawing groups is reported. These were designed to undergo hypoxia-selective metabolism to form potent DNA minor groove-alkylating agents. Analogues 17 and 24, containing the benzyl sulfonate leaving group and a neutral DNA minor groove-binding side chain, displayed hypoxic cytotoxicity ratios (HCRs) of >1000 in HT29 human cancer cells in vitro in an antiproliferative assay. Four analogues maintained large HCRs across a panel of eight human cancer cell lines. In a clonogenic assay, 19 showed an HCR of 4090 in HT29 cells. Ten soluble phosphate preprodrugs were also prepared and evaluated in vivo, alone and in combination with radiation in SiHa human tumor xenografts at a nontoxic dose. Compounds 34 and 39 displayed hypoxic log(10) cell kills (LCKs) of 1.78 and 2.71, respectively, equivalent or superior activity to previously reported chloride or bromide analogues, thus showing outstanding promise as hypoxia-activated prodrugs.
Collapse
Affiliation(s)
- Ralph J Stevenson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|