1
|
Sylvianingsih F, Supratman U, Maharani R. Amino acid- and peptide-conjugated heterocyclic compounds: A comprehensive review of Synthesis Strategies and biological activities. Eur J Med Chem 2025; 290:117534. [PMID: 40158419 DOI: 10.1016/j.ejmech.2025.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Amino acids and peptides have long been recognized as promising candidates for therapeutic development due to their unique structural properties and high specificity. However, their clinical application is often limited by rapid enzymatic degradation, poor bioavailability, and suboptimal pharmacokinetics. Conjugating these biomolecules with heterocyclic compounds has emerged as a transformative strategy to enhance their stability, bioavailability, and overall therapeutic efficacy. This review highlights significant advancements since 2000 in the synthesis and biological applications of amino acid- and peptide-conjugated heterocyclic compounds These conjugates are categorized based on their nitrogen-, sulfur-, and oxygen-containing heterocyclic cores. Key synthetic methodologies, including amide bond formation, carbon-heteroatom coupling, and carbon-carbon bond formation, are discussed in detail. These conjugates exhibit enhanced pharmacological properties, with notable applications in antimicrobial, anticancer, and anti-inflammatory treatments. Despite these advancements, challenges such as synthetic complexity and potential toxicity remain. Future research should prioritize refining synthetic methodologies and leveraging underexplored heterocycles to unlock broader therapeutic applications. Peptide-heterocycle conjugates represent a promising approach to overcoming persistent challenges in modern drug development.
Collapse
Affiliation(s)
- Fany Sylvianingsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia.
| |
Collapse
|
2
|
Yoo S, Choi S, Kim I, Kim IS. Hypoxic regulation of extracellular vesicles: Implications for cancer therapy. J Control Release 2023; 363:201-220. [PMID: 37739015 DOI: 10.1016/j.jconrel.2023.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Extracellular vesicles (EVs) play a pivotal role in intercellular communication and have been implicated in cancer progression. Hypoxia, a pervasive hallmark of cancer, is known to regulate EV biogenesis and function. Hypoxic EVs contain a specific set of proteins, nucleic acids, lipids, and metabolites, capable of reprogramming the biology and fate of recipient cells. Enhancing the intrinsic therapeutic efficacy of EVs can be achieved by strategically modifying their structure and contents. Moreover, the use of EVs as drug delivery vehicles holds great promise for cancer treatment. However, various hurdles must be overcome to enable their clinical application as cancer therapeutics. In this review, we aim to discuss the current knowledge on the hypoxic regulation of EVs. Additionally, we will describe the underlying mechanisms by which EVs contribute to cancer progression in hypoxia and outline the progress and limitations of hypoxia-related EV therapeutics for cancer.
Collapse
Affiliation(s)
- Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Sanga Choi
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
3
|
Comparing Variants of the Cell-Penetrating Peptide sC18 to Design Peptide-Drug Conjugates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196656. [PMID: 36235193 PMCID: PMC9570898 DOI: 10.3390/molecules27196656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Herein, the design and synthesis of peptide-drug conjugates (PDCs) including different variants of the cell-penetrating peptide sC18 is presented. We first generated a series of novel sequence mutants of sC18 having either amino acid deletions and/or substitutions, and then tested their biological activity. The effects of histidine substituents were found to be not meaningful for sC18 uptake and cell selectivity. Moreover, building a nearly perfect amphipathic structure within a shortened sC18 derivative provided a peptide that was highly membrane-active, but also too cytotoxic. As a result, the most promising analog was sC18ΔE, which stands out due to its higher uptake efficacy compared to parent sC18. In the last set of experiments, we let the peptides react with the cytotoxic drug doxorubicin by Thiol-Michael addition to form novel PDCs. Our results indicate that sC18ΔE could be a more efficient drug carrier than parent sC18 for biomedical applications. However, cellular uptake using endocytosis and resulting entrapment of cargo inside vesicles is still a major critical step to overcome in CPP-containing peptide-drug development.
Collapse
|
4
|
Noguchi K, Obuki M, Sumi H, Klußmann M, Morimoto K, Nakai S, Hashimoto T, Fujiwara D, Fujii I, Yuba E, Takatani-Nakase T, Neundorf I, Nakase I. Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Mol Pharm 2021; 18:3290-3301. [PMID: 34365796 DOI: 10.1021/acs.molpharmaceut.1c00244] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.
Collapse
Affiliation(s)
- Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Momoko Obuki
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Sumi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Merlin Klußmann
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Kenta Morimoto
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shinya Nakai
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Fujiwara
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.,Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
5
|
Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27:e3300. [DOI: 10.1002/psc.3300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Siegmund Reissmann
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics Friedrich Schiller University Dornburger Str. 25 Jena Thueringia 07743 Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
6
|
Liu Y, Wang M, Liang Y, Wang C, Naruse K, Takahashi K. Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia. Int J Mol Sci 2021; 22:ijms22041729. [PMID: 33572188 PMCID: PMC7915208 DOI: 10.3390/ijms22041729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.
Collapse
|
7
|
Filippi M, Nguyen DV, Garello F, Perton F, Bégin-Colin S, Felder-Flesch D, Power L, Scherberich A. Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. NANOSCALE 2019; 11:22559-22574. [PMID: 31746914 DOI: 10.1039/c9nr08436c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Being crucial under several pathological conditions, tumors, and tissue engineering, the MRI tracing of hypoxia within cells and tissues would be improved by the use of nanosystems allowing for direct recognition of low oxygenation and further treatment-oriented development. In the present study, we functionalized dendron-coated iron oxide nanoparticles (dendronized IONPs) with a bioreductive compound, a metronidazole-based ligand, to specifically detect the hypoxic tissues. Spherical IONPs with an average size of 10 nm were obtained and then decorated with the new metronidazole-conjugated dendron. The resulting nanoparticles (metro-NPs) displayed negligible effects on cell viability, proliferation, and metabolism, in both monolayer and 3D cell culture models, and a good colloidal stability in bio-mimicking media, as shown by DLS. Overtime quantitative monitoring of the IONP cell content revealed an enhanced intracellular retention of metro-NPs under anoxic conditions, confirmed by the in vitro MRI of cell pellets where a stronger negative contrast generation was observed in hypoxic primary stem cells and tumor cells after labeling with metro-NPs. Overall, these results suggest desirable properties in terms of interactions with the biological environment and capability of selective accumulation into the hypoxic tissue, and indicate that metro-NPs have considerable potential for the development of new nano-platforms especially in the field of anoxia-related diseases and tissue engineered models.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lindenblatt D, Horn M, Götz C, Niefind K, Neundorf I, Pietsch M. Design of CK2β-Mimicking Peptides as Tools To Study the CK2α/CK2β Interaction in Cancer Cells. ChemMedChem 2019; 14:833-841. [PMID: 30786177 DOI: 10.1002/cmdc.201800786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/07/2022]
Abstract
The ubiquitously expressed Ser/Thr kinase CK2 is a key regulator in a variety of key processes in normal and malignant cells. Due to its distinctive anti-apoptotic and tumor-driving properties, elevated levels of CK2 have frequently been found in tumors of different origin. In recent years, development of CK2 inhibitors has largely been focused on ATP-competitive compounds; however, targeting the CK2α/CK2β interface has emerged as a further concept that might avoid selectivity issues. To address the CK2 subunit interaction site, we have synthesized halogenated CK2β-mimicking cyclic peptides modified with the cell-penetrating peptide sC18 to mediate cellular uptake. We investigated the binding of the resulting chimeric peptides to recombinant human CK2α using a recently developed fluorescence anisotropy assay. The iodinated peptide sC18-I-Pc was identified as a potent CK2α ligand (Ki =0.622 μm). It was internalized in cells to a high extent and exhibited significant cytotoxicity toward cancerous HeLa cells (IC50 =37 μm) in contrast to non-cancerous HEK-293 cells. The attractive features and functionalities of sC18-I-Pc offer the opportunity for further improvement.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Mareike Horn
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., Building 44, 66421, Homburg, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| |
Collapse
|
9
|
Neundorf I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:93-109. [PMID: 30980355 DOI: 10.1007/978-981-13-3588-4_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides are both classes of membrane-active peptides sharing similar physicochemical properties. Both kinds of peptides have attracted much attention owing to their specific features. AMPs disrupt cell membranes of bacteria and display urgently needed antibiotic substances with alternative modes of action. Since the multidrug resistance of bacterial pathogens is a more and more raising concern, AMPs have gained much interest during the past years. On the other side, CPPs enter eukaryotic cells without substantially affecting the plasma membrane. They can be used as drug delivery platforms and have proven their usefulness in various applications. However, although both groups of peptides are quite similar, their intrinsic activity is often different, and responsible factors are still in discussion. The aim of this chapter is to summarize and shed light on recent findings and concepts dealing with differences and similarities of AMPs and CPPs and to understand these different functions.
Collapse
Affiliation(s)
- Ines Neundorf
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Gronewold A, Horn M, Neundorf I. Design and biological characterization of novel cell-penetrating peptides preferentially targeting cell nuclei and subnuclear regions. Beilstein J Org Chem 2018; 14:1378-1388. [PMID: 29977402 PMCID: PMC6009097 DOI: 10.3762/bjoc.14.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Within this study, we report about the design and biological characterization of novel cell-penetrating peptides (CPPs) with selective suborganelle-targeting properties. The nuclear localization sequence N50, as well as the nucleoli-targeting sequence NrTP, respectively, were fused to a shortened version of the cell-penetrating peptide sC18. We examined cellular uptake, subcellular fate and cytotoxicity of these novel peptides, N50-sC18* and NrTP-sC18*, and found that they are nontoxic up to a concentration of 50 or 100 µM depending on the cell lines used. Moreover, detailed cellular uptake studies revealed that both peptides enter cells via energy-independent uptake, although endocytotic processes cannot completely excluded. However, initial drug delivery studies demonstrated the high versatility of these new peptides as efficient transport vectors targeting specifically nuclei and nucleoli. In future, they could be further explored as parts of newly created peptide-drug conjugates.
Collapse
Affiliation(s)
- Anja Gronewold
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Mareike Horn
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
11
|
Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 2018; 177:139-148. [PMID: 29890363 DOI: 10.1016/j.biomaterials.2018.05.048] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Treating the hypoxic region of the tumor remains a significant challenge. The goals of this study are to develop an exosome platform that can target regions of tumor hypoxia and that can be monitored in vivo using magnetic particle imaging (MPI). Four types of exosomes (generated under hypoxic or normoxic conditions, and with or without exposure to X-ray radiation) were isolated from MDA-MB-231 human breast cancer cells. Exosomes were labeled by DiO, a fluorescent lipophilic tracer, to quantify their uptake by hypoxic cancer cells. Subsequently, the exosomes were modified to carry SPIO (superparamagnetic iron oxide) nanoparticles and Olaparib (PARP inhibitor). FACS and fluorescence microscopy showed that hypoxic cells preferentially take up exosomes released by hypoxic cells, compared with other exosome formulations. In addition, the distribution of SPIO-labeled exosomes was successively imaged in vivo using MPI. Finally, the therapeutic efficacy of Olaparib-loaded exosomes was demonstrated by increased apoptosis and slower tumor growth in vivo. Our novel theranostic platform could be used as an effective strategy to monitor exosomes in vivo and deliver therapeutics to hypoxic tumors.
Collapse
Affiliation(s)
- Kyung Oh Jung
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, USA.
| | - Hunho Jo
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jung Ho Yu
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA; Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA; Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Kuhlmann N, Chollet C, Baldus L, Neundorf I, Lammers M. Development of Substrate-Derived Sirtuin Inhibitors with Potential Anticancer Activity. ChemMedChem 2017; 12:1703-1714. [DOI: 10.1002/cmdc.201700414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Nora Kuhlmann
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD; University of Cologne; Joseph-Stelzmann-Str. 26 50931 Cologne Germany
| | - Constance Chollet
- Institute for Biochemistry; University of Cologne; Zülpicher Straße 47 50674 Cologne Germany
| | - Linda Baldus
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD; University of Cologne; Joseph-Stelzmann-Str. 26 50931 Cologne Germany
| | - Ines Neundorf
- Institute for Biochemistry; University of Cologne; Zülpicher Straße 47 50674 Cologne Germany
| | - Michael Lammers
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD; University of Cologne; Joseph-Stelzmann-Str. 26 50931 Cologne Germany
| |
Collapse
|
13
|
Biological characterization of novel nitroimidazole-peptide conjugates in vitr
o and in vivo. J Pept Sci 2017; 23:597-609. [DOI: 10.1002/psc.2995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
|
14
|
Gronewold A, Horn M, Ranđelović I, Tóvári J, Muñoz Vázquez S, Schomäcker K, Neundorf I. Characterization of a Cell-Penetrating Peptide with Potential Anticancer Activity. ChemMedChem 2017; 12:42-49. [PMID: 27860402 PMCID: PMC5516705 DOI: 10.1002/cmdc.201600498] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cell-penetrating peptides (CPPs) are still an interesting and viable alternative for drug delivery applications. CPPs contain considerably high amounts of positively charged amino acids, imparting them with cationic character. Tumor cells are characterized by an enhanced anionic nature of their membrane surface, a property that could be used by CPPs to target these cells. We recently identified a branched CPP that displays a high internalization capacity while exhibiting selectivity for certain tumor cell types. In this study we elucidated this observation in greater detail by investigating the underlying mechanism behind the cellular uptake of this peptide. An additional cytotoxicity screen against several cancer cell lines indeed demonstrates high cytotoxic activity against cancer cells over normal fibroblasts. Furthermore, we show that this feature can be used for delivering the anticancer drug actinomycin D with high efficiency in the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Anja Gronewold
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| | - Mareike Horn
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| | - Ivan Ranđelović
- National Institute of OncologyDepartment of Experimental PharmacologyRáth Gy. u. 7–9112BudapestHungary
| | - József Tóvári
- National Institute of OncologyDepartment of Experimental PharmacologyRáth Gy. u. 7–9112BudapestHungary
| | - Sergio Muñoz Vázquez
- University Hospital of CologneDepartment of Nuclear MedicineKerpener Str. 6250937CologneGermany
| | - Klaus Schomäcker
- University Hospital of CologneDepartment of Nuclear MedicineKerpener Str. 6250937CologneGermany
| | - Ines Neundorf
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| |
Collapse
|
15
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
16
|
Horn M, Reichart F, Natividad-Tietz S, Diaz D, Neundorf I. Tuning the properties of a novel short cell-penetrating peptide by intramolecular cyclization with a triazole bridge. Chem Commun (Camb) 2016; 52:2261-4. [DOI: 10.1039/c5cc08938g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic versus linear: cyclic triazole-bridged cell-penetrating peptides are optimally arranged within the membrane, thus at the same time inducing suitable DNA complexation and successful peptide membrane insertion.
Collapse
Affiliation(s)
- M. Horn
- Department of Chemistry
- Institute of Biochemistry
- 50674 Cologne
- Germany
| | - F. Reichart
- Department of Chemistry
- Institute of Biochemistry
- 50674 Cologne
- Germany
| | | | - D. Diaz
- Department of Chemistry
- Organic Chemistry
- 50939 Cologne
- Germany
| | - I. Neundorf
- Department of Chemistry
- Institute of Biochemistry
- 50674 Cologne
- Germany
| |
Collapse
|
17
|
Reinhardt A, Horn M, Schmauck JPG, Bröhl A, Giernoth R, Oelkrug C, Schubert A, Neundorf I. Novel imidazolium salt--peptide conjugates and their antimicrobial activity. Bioconjug Chem 2014; 25:2166-74. [PMID: 25428117 DOI: 10.1021/bc500510c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our study presents innovative research dealing with the synthesis and biological evaluation of conjugates out of antimicrobial peptides (AMPs) and imidazolium cations that are derived from ionic liquids. AMPs are considered as promising alternatives to common antibiotics due to their different activity mechanisms. Antibacterial effects have also been described for ionic liquids bearing imidazolium cations . Besides single coupling of carboxy-functionalized imidazolium cations to the peptide N-terminal we also developed conjugates bearing multiple copies of imidazolium cations. The combination of both compounds resulted in synergistic effects that were most pronounced when more imidazolium cations were attached to the peptides. In addition, antibacterial activity even in drug-resistant bacterial strains could be observed. Moreover, the novel compounds showed good selectivity only against bacterial cells, an observation that was further proven by lipid interaction studies using giant unilamellar vesicles.
Collapse
Affiliation(s)
- A Reinhardt
- Department of Chemistry, Institute of Biochemistry, University of Cologne , Zuelpicher Str. 47, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
19
|
Richter S, Bouvet V, Wuest M, Bergmann R, Steinbach J, Pietzsch J, Neundorf I, Wuest F. 18F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells. Nucl Med Biol 2012; 39:1202-12. [DOI: 10.1016/j.nucmedbio.2012.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/14/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
20
|
Hoyer J, Schatzschneider U, Schulz-Siegmund M, Neundorf I. Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein J Org Chem 2012; 8:1788-97. [PMID: 23209513 PMCID: PMC3511013 DOI: 10.3762/bjoc.8.204] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
Over the past 20 years, cell-penetrating peptides (CPPs) have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene) complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC18)(2), which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC18)(2) leads to significant reduction of its IC(50) value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.
Collapse
Affiliation(s)
- Jan Hoyer
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany ; Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | | | | | | |
Collapse
|