1
|
Yin X, Lai Y, Zhang X, Zhang T, Tian J, Du Y, Li Z, Gao J. Targeted Sonodynamic Therapy Platform for Holistic Integrative Helicobacter pylori Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408583. [PMID: 39535366 PMCID: PMC11727135 DOI: 10.1002/advs.202408583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Helicobacter pylori (H. pylori) is a primary pathogen associated with gastrointestinal diseases, including gastric cancer. The increase in resistance to antibiotics, along with the adverse effects caused by complicated medication protocols, has made the eradication of H. pylori a more formidable challenge, necessitating alternative therapeutics. Herein, a targeted nanoplatform is reported based on sonodynamic therapy, the chitosan-conjugated fucose loaded with indocyanine green (ICG@FCS). It penetrates the gastric mucosa and homes in on H. pylori through dual targeting mechanisms: molecular via fucose and physical via ultrasound. Upon ultrasound activation, it generates singlet oxygen, effectively attacking planktonic bacteria, disrupting biofilms, and facilitating the clearance of intracellular bacteria by promoting autophagy, including multidrug-resistant strains. The ICG@FCS nanoplatform minimally affects the gut microbiota and aids in gastric mucosa repair. a holistic integrative H. pylori therapy strategy is proposed that targets eradication while preserving gastrointestinal health. This strategy emphasizes the importance of maintaining patient health while eradicating the pathogen. This advancement is set to refine the comprehensive antibacterial approach, offering a promising horizon in the ongoing battle against antibiotic resistance and more effective gastric cancer prevention strategies.
Collapse
Affiliation(s)
- Xiaojing Yin
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Yongkang Lai
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- Department of GastroenterologyGanzhou People's Hospital Affiliated to Nanchang UniversityGanzhou341000China
| | - Xinyuan Zhang
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Tingling Zhang
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Jing Tian
- Department of PharmacyShanghai Changhai Hospitalthe First Affiliated Hospital of Navy Medical UniversityShanghai200433China
| | - Yiqi Du
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhaoshen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Jie Gao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesShanghai200433China
| |
Collapse
|
2
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
He X, Tian Y, Dong J, Yuan Y, Zhang S, Jing H. RNA-Seq Reveals the Mechanism of Pyroptosis Induced by Oxygen-Enriched IR780 Nanobubbles-Mediated Sono-Photodynamic Therapy. Int J Nanomedicine 2024; 19:13029-13045. [PMID: 39654803 PMCID: PMC11625641 DOI: 10.2147/ijn.s487412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Background Sono-photodynamic therapy (SPDT), the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), is a promising tumor treatment method. However, the hypoxic tumor microenvironment greatly compromises the efficacy of SPDT. Pyroptosis, a new type of programmed cell death, is mainly induced by some chemotherapeutic drugs in the current research, and rarely by SPDT. RNA sequencing (RNA-seq) is a high-throughput sequencing technique that comprehensively profiles the transcriptome, revealing the full spectrum of RNA molecules in a cell. Here, we constructed IR780@O2 nanobubbles (NBs) with photoacoustic dual response and hypoxia improvement properties to fight triple negative breast cancer (TNBC), and demonstrated that SPDT could kill TNBC cells through pyroptosis pathway. RNA-seq further revealed potential mechanisms and related differentially expressed genes. Methods Thin-film hydration and mechanical vibration method were utilized to synthesize IR780@O2 NBs. Subsequently, we characterized IR780@O2 NBs and examined the cytotoxicity as well as ROS production ability. A series of experiments were conducted to verify that SPDT killed TNBC cells through pyroptosis. Results IR780@O2 NBs were successfully prepared and had certain stability. Compared with SDT alone, SPDT increased therapeutic effect by 1.67 times by generating more ROS, and the introduction of NBs and O2 NBs (2.23 times and 2.93 times compared with SDT alone) could further promote this process. Other experiments proved that TNBC cells died by pyroptosis pathway. Moreover, the in-depth mechanism revealed that colony stimulating factor (CSF) and C-X-C motif chemokine ligand (CXCL) could be potential targets for the occurrence of pyroptosis in TNBC cells. Conclusion The IR780@O2 NBs prepared in this study increased the degree of TNBC cell pyroptosis through SPDT effect and alleviation of hypoxia, and cellular senescence might be a biological process closely related to pyroptosis in TNBC.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jialin Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shijie Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
5
|
Wang Y, Xu Y, Zhang R, Li J, Cong Y, Li R, Wang X, Shi H, Wang S, Feng L. Tuning molecular assembly behavior to amplify the sonodynamic activity of porphyrins for efficient antibacterial therapy. Biomater Sci 2024; 12:4440-4451. [PMID: 39044564 DOI: 10.1039/d4bm00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Sonodynamic therapy (SDT) is a promising strategy to treat deep-seated bacterial infections with good tissue penetration and spatiotemporal controllability. However, the low ROS generation efficiency of current sonosensitizers limits the development of SDT. Herein, we report a porphyrin derivative, TAPyPP-2, the sonodynamic activity of which is enhanced with less oxygen dependence by tuning its molecular assembly behavior. TAPyPP-2 can spontaneously form an ultra-small nano-assembly with a diameter of 6 nm in water by conjugation with primary amine salt-decorated pyridinium via π-π staking. The ultra-small assembly behavior can lower the energy gap between singlet and triplet states to 0.01 eV and promote the separation of holes and electrons, which facilitates ROS generation under ultrasound irradiation, in particular type I ROS. The unique hydrophilic ratio and positive charges endow TAPyPP-2 with superior abilities to interact with Staphylococcus aureus, resulting in extremely high sonodynamic antibacterial activity. Therefore, TAPyPP-2 successfully kills Staphylococcus aureus bacteria in the enclosed cavity of synovial joint and achieves effective SDT of septic arthritis. This work is anticipated to motivate enormous interest in the development of efficient SDT.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Yicheng Xu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Rui Zhang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Yujie Cong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R China
| | - Ruipeng Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China
| |
Collapse
|
6
|
Radivoievych A, Prylutska S, Zolk O, Ritter U, Frohme M, Grebinyk A. Comparison of Sonodynamic Treatment Set-Ups for Cancer Cells with Organic Sonosensitizers and Nanosonosensitizers. Pharmaceutics 2023; 15:2616. [PMID: 38004594 PMCID: PMC10674572 DOI: 10.3390/pharmaceutics15112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups-"sealed well" and "transducer in well"-in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates-carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a "transducer in well" set-up than a "sealed well" set-up underlined its promising application for SDT in vitro studies. The "transducer in well" set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.
Collapse
Affiliation(s)
- Aleksandar Radivoievych
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.R.); (A.G.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany;
| | - Svitlana Prylutska
- Department of Plants Physiology, Biochemistry and Bioenergetics, National University of Life and Environmental Science of Ukraine, Heroyiv Oborony Str., 15, 03041 Kyiv, Ukraine;
| | - Oliver Zolk
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany;
- Institute of Clinical Pharmacology, Brandenburg Medical School, Immanuel Klinik Ruedersdorf, 15562 Ruedersdorf, Germany
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.R.); (A.G.)
| | - Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.R.); (A.G.)
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
7
|
Li S, Mok GSP, Dai Y. Lipid bilayer-based biological nanoplatforms for sonodynamic cancer therapy. Adv Drug Deliv Rev 2023; 202:115110. [PMID: 37820981 DOI: 10.1016/j.addr.2023.115110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Sonodynamic therapy (SDT) has been developed as a promising alternative therapeutic modality for cancer treatment, involving the synergetic application of sonosensitizers and low-intensity ultrasound. However, the antitumor efficacy of SDT is significantly limited due to the poor performance of conventional sonosensitizers in vivo and the constrained tumor microenvironment (TME). Recent breakthroughs in lipid bilayer-based nanovesicles (LBBNs), including multifunctional liposomes, exosomes, and isolated cellular membranes, have brought new insights into the advancement of SDT. Despite their distinct sources and preparation methods, the lipid bilayer structure in common allows them to be functionalized in many comparable ways to serve as ideal nanocarriers against challenges arising from the tumor-specific sonosensitizer delivery and the complicated TME. In this review, we provide a comprehensive summary of the recent advances in LBBN-based SDT, with particular attention on how LBBNs can be engineered to improve the delivery efficiency of sonosensitizers and overcome physical, biological, and immune barriers within the TME for enhanced sonodynamic cancer therapy. We anticipate that this review will offer valuable guidance in the construction of LBBN-based nanosonosensitizers and contribute to the development of advanced strategies for next-generation sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Songhao Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
8
|
Jiang Z, Xiao W, Fu Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 2023; 361:547-567. [PMID: 37567504 DOI: 10.1016/j.jconrel.2023.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
9
|
Wang C, Zhang R, He J, Yu L, Li X, Zhang J, Li S, Zhang C, Kagan JC, Karp JM, Kuai R. Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nat Commun 2023; 14:3877. [PMID: 37391428 PMCID: PMC10313815 DOI: 10.1038/s41467-023-39607-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
DNA derived from chemotherapeutics-killed tumor cells is one of the most important damage-associated molecular patterns that can activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway in antigen-presenting cells (APCs) and promote antitumor immunity. However, conventional chemotherapy displays limited tumor cell killing and ineffective transfer of stable tumor DNA to APCs. Here we show that liposomes loaded with an optimized ratio of indocyanine green and doxorubicin, denoted as LID, efficiently generate reactive oxygen species upon exposure to ultrasound. LID plus ultrasound enhance the nuclear delivery of doxorubicin, induce tumor mitochondrial DNA oxidation, and promote oxidized tumor mitochondrial DNA transfer to APCs for effective activation of cGAS-STING signaling. Depleting tumor mitochondrial DNA or knocking out STING in APCs compromises the activation of APCs. Furthermore, systemic injection of LID plus ultrasound over the tumor lead to targeted cytotoxicity and STING activation, eliciting potent antitumor T cell immunity, which upon the combination with immune checkpoint blockade leads to regression of bilateral MC38, CT26, and orthotopic 4T1 tumors in female mice. Our study sheds light on the importance of oxidized tumor mitochondrial DNA in STING-mediated antitumor immunity and may inspire the development of more effective strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Lvshan Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Junxia Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, 100084, China
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, 100084, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
10
|
Cao X, Liu Q, Adu-Frimpong M, Shi W, Liu K, Deng T, Yuan H, Weng X, Gao Y, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023; 24:82. [PMID: 36949351 DOI: 10.1208/s12249-023-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Hui Yuan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Yihong Gao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| | - Gao Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| |
Collapse
|
11
|
Yang F, Dong J, Li Z, Wang Z. Metal-Organic Frameworks (MOF)-Assisted Sonodynamic Therapy in Anticancer Applications. ACS NANO 2023; 17:4102-4133. [PMID: 36802411 DOI: 10.1021/acsnano.2c10251] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as a promising therapeutic modality for anticancer treatments and is becoming a cutting-edge interdisciplinary research field. This review starts with the latest developments of SDT and provides a brief comprehensive discussion on ultrasonic cavitation, sonodynamic effect, and sonosensitizers in order to popularize the basic principles and probable mechanisms of SDT. Then the recent progress of MOF-based sonosensitizers is overviewed, and the preparation methods and properties (e.g., morphology, structure, and size) of products are presented in a fundamental perspective. More importantly, many deep observations and understanding toward MOF-assisted SDT strategies were described in anticancer applications, aiming to highlight the advantages and improvements of MOF-augmented SDT and synergistic therapies. Last but not least, the review also pointed out the probable challenges and technological potential of MOF-assisted SDT for the future advance. In all, the discussions and summaries of MOF-based sonosensitizers and SDT strategies will promote the fast development of anticancer nanodrugs and biotechnologies.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Jun Dong
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| |
Collapse
|
12
|
Liu L, Zhang J, An R, Xue Q, Cheng X, Hu Y, Huang Z, Wu L, Zeng W, Miao Y, Li J, Zhou Y, Chen HY, Liu H, Ye D. Smart Nanosensitizers for Activatable Sono-Photodynamic Immunotherapy of Tumors by Redox-Controlled Disassembly. Angew Chem Int Ed Engl 2023; 62:e202217055. [PMID: 36602292 DOI: 10.1002/anie.202217055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Tumor-targeted and stimuli-activatable nanosensitizers are highly desirable for cancer theranostics. However, designing smart nanosensitizers with multiple imaging signals and synergistic therapeutic activities switched on is challenging. Herein, we report tumor-targeted and redox-activatable nanosensitizers (1-NPs) for sono-photodynamic immunotherapy of tumors by molecular co-assembly and redox-controlled disassembly. 1-NPs show a high longitudinal relaxivity (r1 =18.7±0.3 mM-1 s-1 ), but "off" dual fluorescence (FL) emission (at 547 and 672 nm), "off" sono-photodynamic therapy and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition activities. Upon reduction by glutathione (GSH), 1-NPs rapidly disassemble and remotely release small molecules 2-Gd, Zn-PPA-SH and NLG919, concurrently switching on (1) dual FL emission, (2) sono-photodynamic therapy and (3) IDO1 inhibition activities. After systemic injection, 1-NPs are effective for bimodal FL and magnetic resonance (MR) imaging-guided sono-photodynamic immunotherapy of orthotropic breast and brain tumors in mice under combined ultrasound (US) and 671-nm laser irradiation.
Collapse
Affiliation(s)
- Lingjun Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xi Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
14
|
Sofuni A, Itoi T. Current status and future perspective of sonodynamic therapy for cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01263-x. [PMID: 36224458 DOI: 10.1007/s10396-022-01263-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/07/2022]
Abstract
There is a tremendous need for prevention and effective treatment of cancer due to the associated morbidity and mortality. In this study, we introduce sonodynamic therapy (SDT), which is expected to be a new cancer treatment modality. SDT is a promising option for minimally invasive treatment of solid tumors and comprises three different components: sonosensitizers, ultrasound, and molecular oxygen. These components are harmless individually, but in combination they generate cytotoxic reactive oxygen species (ROS). We will explore the molecular mechanism by which SDT kills cancer cells, the class of sonosensitizers, drug delivery methods, and in vitro and in vivo studies. At the same time, we will highlight clinical applications for cancer treatment. The progress of SDT research suggests that it has the potential to become an advanced field of cancer treatment in clinical application. In this article, we will focus on the mechanism of action of SDT and its application to cancer treatment, and explain key factors to aid in developing strategies for future SDT development.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
15
|
Investigation of Sonosensitizers Based on Phenothiazinium Photosensitizers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main advantage of sonodynamic therapy (SDT), the combining of ultrasound with a sonosensitizer, over photodynamic therapy (PDT) is that ultrasound penetrates deeper into tissues to activate the sonosensitizer, which offers noninvasive therapy for tumors in a site-oriented approach. In this study, we synthesized two symmetrical phenothiazine derivatives in which the methyl groups of MB (methylene blue) have been replaced by a hexyl and hydroxyethyl chains, named 3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) and 3,7-bis(di(2-hydroxyethyl)amino)-phenothiazin-5-ium iodide (MBOH), respectively. We explore the efficiency differences between PDT and SDT induced by these phenothiazine derivatives based on the standard of methylene blue (MB). Spectral studies indicate that these MB analogs exhibit sonosensitization ability with a similar tendency to the photosensitization ability. This means that MB, MBOH, and MB6C can be potential photosensitizers and sonosensitizers. After biological evaluation, we conclude that compound MB6C is a potential PDT and SDT candidate because it exhibits higher uptake, efficient intracellular phototoxicity and sonotoxicity over MB and MBOH, with IC50 values of ~2.5 µM and ~5 µM, respectively.
Collapse
|
16
|
Lea-Banks H, Wu SK, Lee H, Hynynen K. Ultrasound-triggered oxygen-loaded nanodroplets enhance and monitor cerebral damage from sonodynamic therapy. Nanotheranostics 2022; 6:376-387. [PMID: 35795341 PMCID: PMC9254362 DOI: 10.7150/ntno.71946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 11/05/2022] Open
Abstract
In sonodynamic therapy, cellular toxicity from sonosensitizer drugs, such as 5-aminolevulinic acid hydrochloride (5-ALA), may be triggered with focused ultrasound through the production of reactive oxygen species (ROS). Here we show that by increasing local oxygen during treatment, using oxygen-loaded perfluorocarbon nanodroplets (250 +/- 8 nm), we can increase the damage induced by 5-ALA, and monitor the severity by recording acoustic emissions in the brain. To achieve this, we sonicated the right striatum of 16 healthy rats after an intravenous dose of 5-ALA (200 mg/kg), followed by saline, nanodroplets, or oxygen-loaded nanodroplets. We assessed haemorrhage, edema and cell apoptosis immediately following, 24 hr, and 48 hr after focused ultrasound treatment. The localized volume of damaged tissue was significantly enhanced by the presence of oxygen-loaded nanodroplets, compared to ultrasound with unloaded nanodroplets (3-fold increase), and ultrasound alone (40-fold increase). Sonicating 1 hr following 5-ALA injection was found to be more potent than 2 hr following 5-ALA injection (2-fold increase), and the severity of tissue damage corresponded to the acoustic emissions from droplet vaporization. Enhancing the local damage from 5-ALA with monitored cavitation activity and additional oxygen could have significant implications in the treatment of atherosclerosis and non-invasive ablative surgeries.
Collapse
Affiliation(s)
- Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Hannah Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Wang R, Song C, Gao A, Liu Q, Guan W, Mei J, Ma L, Cui D. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomater 2022; 143:418-427. [PMID: 35219867 DOI: 10.1016/j.actbio.2022.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori is a causative factor of various gastrointestinal tract diseases. As clinical antibiotic-based therapy for H. pylori infection might induce bacterial drug resistance, the in vivo eradication of H. pylori remains a huge challenge. In the present study, monoclonal antibody-conjugated liposomes loaded with indocyanine green (ICG) (HpAb-LiP-ICG) were successfully developed for targeted photoacoustic (PA) imaging-guided sonodynamic therapy (SDT) of H. pylori infection in vivo. HpAb-LiP-ICG showed high stability and favorable biocompatibility in acidic environment (pH 1.5) and was used for treating H. pylori-infected mice through oral administration. PA imaging showed that HpAb-LiP-ICG could precisely recognize and target H. pylori in the stomach. Following the targeting of HpAb-LiP-ICG to H. pylori, ICG was activated to generate singlet oxygen (1O2) for eliminating H. pylori under ultrasound (US) irradiation. Pathological analysis revealed that the HpAb-LiP-ICG-mediated SDT eradicated H. pylori without unintended toxicity to normal tissues. In conclusion, the HpAb-LiP-ICG-mediated SDT might shed new light on treating H. pylori infection, indicating the clinical translational prospects of this therapy in near future. STATEMENT OF SIGNIFICANCE: Traditional antibiotic-based therapy for Helicobacter pylori infections suffers from the risk of drug resistance. To meet this challenge, a monoclonal antibody-conjugated nanoliposome loaded with indocyanine green (ICG) (HpAb-LiP-ICG) was successfully developed, and efficient eradication of H. pylori was achieved in vivo by visual sonodynamic therapy (SDT). HpAb-LiP-ICG exhibited biocompatibility, targeting, and stability in the acidic microenvironment. Under ultrasound (US) irradiation in vitro, the HpAb-LiP-ICG nanoliposomes accumulated on the surface of H. pylori were activated to produce adequate singlet oxygen (1O2) to eliminate H. pylori. Gastric mucous tissues infected with H. pylori recovered to the normal state after HpAb-LiP-ICG-mediated SDT without side effects, thus highlighting the clinical translational prospects of the prepared HpAb-LiP-ICG nanoliposome in near future.
Collapse
|
18
|
Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14082004. [PMID: 35454910 PMCID: PMC9032169 DOI: 10.3390/cancers14082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a light-activated treatment modality, which is being clinically used and further developed for a number of premalignancies, solid tumors, and disseminated cancers. Nanomedicines that facilitate PDT (photonanomedicines, PNMs) have transformed its safety, efficacy, and capacity for multifunctionality. This review focuses on the state of the art in deep-tissue activation technologies for PNMs and explores how their preclinical use can evolve towards clinical translation by harnessing current clinically available instrumentation. Abstract With the continued development of nanomaterials over the past two decades, specialized photonanomedicines (light-activable nanomedicines, PNMs) have evolved to become excitable by alternative energy sources that typically penetrate tissue deeper than visible light. These sources include electromagnetic radiation lying outside the visible near-infrared spectrum, high energy particles, and acoustic waves, amongst others. Various direct activation mechanisms have leveraged unique facets of specialized nanomaterials, such as upconversion, scintillation, and radiosensitization, as well as several others, in order to activate PNMs. Other indirect activation mechanisms have leveraged the effect of the interaction of deeply penetrating energy sources with tissue in order to activate proximal PNMs. These indirect mechanisms include sonoluminescence and Cerenkov radiation. Such direct and indirect deep-tissue activation has been explored extensively in the preclinical setting to facilitate deep-tissue anticancer photodynamic therapy (PDT); however, clinical translation of these approaches is yet to be explored. This review provides a summary of the state of the art in deep-tissue excitation of PNMs and explores the translatability of such excitation mechanisms towards their clinical adoption. A special emphasis is placed on how current clinical instrumentation can be repurposed to achieve deep-tissue PDT with the mechanisms discussed in this review, thereby further expediting the translation of these highly promising strategies.
Collapse
|
19
|
Araújo Martins Y, Zeferino Pavan T, Fonseca Vianna Lopez R. Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. Int J Pharm 2021; 610:121243. [PMID: 34743959 DOI: 10.1016/j.ijpharm.2021.121243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Sonodynamic therapy (SDT) is a new therapeutic modality for noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Up to date, there is not a consensus on the standardization of the experimental conditions for the in vitro studies to correctly assess cell viability during SDT. Therefore, this review article mainly describes how the main ultrasound parameters and experimental setups of ultrasound application in vitro studies can influence the SDT bioeffects/response. The sonodynamic action is impacted by the combination of frequency, intensity, duty cycle, and ultrasound application time. The variation of experimental setups in cell culture, such as the transducer position, cell-transducer distance, coupling medium thickness, or type of culture, also influences the sonodynamic response. The intensity, duty cycle, and sonication duration increase cytotoxicity and reactive oxygen species production. For similar ultrasound parameters, differences in the experimental configuration impact cell death in vitro. Four main experimental setups are used to assess for SDT in cell culture (i) a planar transducer placed directly in contact with the bottom of the culture microplate; (ii) microplate positioned in the transducer's far-field using a water tank; (iii) sealed cell culture tubes immersed in water away from the transducer; and (iv) transducer dipped directly into the well with cell culture. Because of the significant variations in the experimental setups, sonodynamic response can significantly vary, and the translation of these results for in vivo experimentation is difficult. Therefore, a well-designed and detailed in vitro experimental setup is vital for understanding the interactions among the biological medium, the sonosensitizer, and the ultrasound for the in vitro to in vivo translation in SDT.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Theo Zeferino Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP-USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Lee YD, Shin HJ, Yoo J, Kim G, Kang MK, Lee JJ, Bang J, Yang JK, Kim S. Metal complexation-mediated stable and biocompatible nanoformulation of clinically approved near-infrared absorber for improved tumor targeting and photonic theranostics. NANO CONVERGENCE 2021; 8:36. [PMID: 34757544 PMCID: PMC8581101 DOI: 10.1186/s40580-021-00286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 05/27/2023]
Abstract
Indocyanine green (ICG) is a clinically approved dye that has shown great promise as a phototheranostic material with fluorescent, photoacoustic and photothermal responses in the near-infrared region. However, it has certain limitations, such as poor photostability and non-specific binding to serum proteins, subjected to rapid clearance and decreased theranostic efficacy in vivo. This study reports stable and biocompatible nanoparticles of ICG (ICG-Fe NPs) where ICG is electrostatically complexed with an endogenously abundant metal ion (Fe3+) and subsequently nanoformulated with a clinically approved polymer surfactant, Pluronic F127. Under near-infrared laser irradiation, ICG-Fe NPs were found to be more effective for photothermal temperature elevation than free ICG molecules owing to the improved photostability. In addition, ICG-Fe NPs showed the markedly enhanced tumor targeting and visualization with photoacoustic/fluorescent signaling upon intravenous injection, attributed to the stable metal complexation that prevents ICG-Fe NPs from releasing free ICG before tumor targeting. Under dual-modal imaging guidance, ICG-Fe NPs could successfully potentiate photothermal therapy of cancer by applying near-infrared laser irradiation, holding potential as a promising nanomedicine composed of all biocompatible ingredients for clinically relevant phototheranostics.
Collapse
Affiliation(s)
- Yong-Deok Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Jeong Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jounghyun Yoo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gayoung Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Min-Kyoung Kang
- Laboratory Animal Center, KBIO Osong Medical Innovation Foundation, Osong, 28160, Republic of Korea
| | - Jae Jun Lee
- Laboratory Animal Center, KBIO Osong Medical Innovation Foundation, Osong, 28160, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jin-Kyoung Yang
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
22
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Dong Y, Cao W, Cao J. Treatment of rheumatoid arthritis by phototherapy: advances and perspectives. NANOSCALE 2021; 13:14591-14608. [PMID: 34473167 DOI: 10.1039/d1nr03623h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that is prevalent worldwide and seriously threatens human health. Though traditional drug therapy can alleviate RA symptoms and slow progression, high dosage and frequent administration would cause unfavorable side effects. Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has demonstrated distinctive potential in RA treatment. Under light irradiation, phototherapy can convert light into heat, or generate ROS, to promote necrosis or apoptosis of RA inflammatory cells, thus reducing the concentration of related inflammatory factors and relieving the symptoms of RA. In this review, we will summarize the development in the application of phototherapy in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Wei Cao
- Department of Orthopaedics, The People's Hospital of Feixian, Linyi, 273400, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
24
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
25
|
Li Z, Fan F, Ma J, Yin W, Zhu D, Zhang L, Wang Z. Oxygen- and bubble-generating polymersomes for tumor-targeted and enhanced photothermal-photodynamic combination therapy. Biomater Sci 2021; 9:5841-5853. [PMID: 34269778 DOI: 10.1039/d1bm00659b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a common feature of the tumor microenvironment (TME), hypoxia significantly impedes the effects of photodynamic therapy. Moreover, for tumor combination therapy, smart responsive and well-designed nanocarriers are highlighted to co-deliver different therapeutics, enhance drug delivery into target sites, and realize stimuli-responsive drug release. Herein, oxygen- and bubble-generating polymersomes (FIMPs) were developed for tumor-targeted and enhanced photothermal-photodynamic combination therapy. FIMPs efficiently co-encapsulated manganese dioxide (MnO2) and the hydrophobic photosensitizer indocyanine green (ICG) within the hydrophobic membrane as well as the bubble-generating reagent NH4HCO3 in the internal cavity of the vesicles, and achieved pH/temperature/reduction multiple responsiveness. The CO2 bubbles generated from the decomposition of NH4HCO3via laser irradiation or acidic environment and the cleavage of the copolymer disulfide bond in the reducing TME would destroy the vesicle structure for triggering drug release. In addition, oxygen can be produced to overcome tumor hypoxia through the high reaction activity of MnO2 with endogenous H2O2. In vitro studies have shown that FIMPs achieved good photothermal conversion efficiency, promoted the generation of oxygen and reactive oxygen species (ROS), and thus effectively killed tumor cells. In vivo studies indicated that FIMPs effectively overcome the hypoxic microenvironment within tumors and significantly inhibit tumor growth with good biocompatibility. The rationally designed oxygen- and bubble-generating polymersomes have great potential to overcome the tumor hypoxia limitations for enhancing the photothermal-photodynamic combination therapeutic effect.
Collapse
Affiliation(s)
- Zhouru Li
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nguyen Cao TG, Kang JH, You JY, Kang HC, Rhee WJ, Ko YT, Shim MS. Safe and Targeted Sonodynamic Cancer Therapy Using Biocompatible Exosome-Based Nanosonosensitizers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25575-25588. [PMID: 34033477 DOI: 10.1021/acsami.0c22883] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sonodynamic therapy (SDT), wherein sonosensitizers irradiated with ultrasound (US) produce cytotoxic reactive oxygen species (ROS), has garnered great attention as a promising alternative to photodynamic therapy owing to the significantly increased depth of tissue penetration. The development of nanocarriers that can selectively deposit sonosensitizers into tumor tissues without systemic toxicity is crucial to facilitate the translation of SDT to clinical use. In this study, exosomes, a class of naturally occurring nanoparticles, were utilized as nanocarriers for safe and cancer-targeted delivery of a sonosensitizer, indocyanine green (ICG). The exosomes were surface-engineered with an active cancer-targeting ligand, folic acid (FA), to increase the cancer specificity of the ICG-loaded exosomes (ExoICG). The FA-conjugated, ICG-loaded exosomes (FA-ExoICG) greatly improved aqueous stability and cellular uptake of ICG, resulting in significantly increased ROS generation in breast cancer cells. As a result, the FA-ExoICG demonstrated greater sonotoxicity against cancer cells than ExoICG and free ICG. The in vivo study revealed that compared to ExoICG, more FA-ExoICG accumulated in tumors, and their pharmacokinetic properties were superior. Notably, tumor growth in mice was significantly suppressed, without systemic toxicity, by a single intravenous injection of the FA-ExoICG and subsequent US irradiation. Therefore, this study demonstrated that active cancer-targeted FA-ExoICG could serve as effective nanosonosensitizers for safe and targeted cancer treatment.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jae Young You
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
27
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
28
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
29
|
Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. J Control Release 2021; 332:448-459. [DOI: 10.1016/j.jconrel.2021.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023]
|
30
|
Yang Y, Fan Z, Zheng K, Shi D, Su G, Ge D, Zhao Q, Fu X, Hou Z. A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy. J Mater Chem B 2021; 9:5547-5559. [PMID: 34165487 DOI: 10.1039/d1tb01025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonodynamic therapy has attracted wide attention as a noninvasive therapy due to deep tissue penetration. However, majority sonosensitizers often suffer from poor physiological stability, rapid blood clearance and nonspecific targeting, which seriously hinders their further practical applications. Inspired by the concept of active targeting drug delivery, both dual-functional chemo-drug pemetrexed (PEM, emerges an innate affinity toward the folate receptor) and amphiphilic d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected to be covalently linked by an esterase-responsive ester linkage. The synthesized self-targeting TPGS-PEM prodrug and indocyanine green (ICG) as functional motifs can be self-assembled into a TPGS-PEM-ICG nanoplatform within an aqueous medium. The TPGS-PEM-ICG nanoplatform with outstanding structural and physiological stability not only protects the sonosensitizer from reticular endothelial system clearance but also achieves active targeting drug delivery and efficient tumor enrichment. Moreover, TPGS-PEM-ICG nanoplatform can selectively recognize tumor cells and then realize on-demand drug burst release by multiple stimuli of internal lysosomal acidity, esterase and external ultrasound, which guarantee low side effects toward normal tissues and organs. It is also worth noting that our nanoplatform exhibits protruding tumor enrichment under the precise guidance of photoacoustic/fluorescence imaging. Further in vitro and in vivo experimental results well confirmed that the TPGS-PEM-ICG nanoplatform possesses enhanced chemo-sonodynamic effects. Interestingly, the highly toxic reactive oxygen species can remarkably reduce the blood oxygen saturation signal of the tumor microenvironment via precise, multifunctional and high-resolution photoacoustic imaging. Taken together, the TPGS-PEM-ICG nanoplatform can be expected to hold enormous potential for diagnosis, prognosis and targeted therapy for tumor.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Kaili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Dao Shi
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Guanghao Su
- Children's Hospital of Soochow University, Suzhou 215025, China
| | - Dongtao Ge
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xu Fu
- Lanzhou University Second Hospital, Lanzhou 730000, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
31
|
Investigating the performance of a novel pH and cathepsin B sensitive, stimulus-responsive nanoparticle for optimised sonodynamic therapy in prostate cancer. J Control Release 2021; 329:76-86. [PMID: 33245955 PMCID: PMC8551370 DOI: 10.1016/j.jconrel.2020.11.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Nano-formulations that are responsive to tumour-related and externally-applied stimuli can offer improved, site-specific antitumor effects, and can improve the efficacy of conventional therapeutic agents. Here, we describe the performance of a novel stimulus-responsive nanoparticulate platform for the targeted treatment of prostate cancer using sonodynamic therapy (SDT). The nanoparticles were prepared by self-assembly of poly(L-glutamic acid-L-tyrosine) co-polymer with hematoporphyrin. The nanoparticulate formulation was characterized with respect to particle size, morphology, surface charge and singlet oxygen production during ultrasound exposure. The response of the formulation to the presence of cathepsin B, a proteolytic enzyme that is overexpressed and secreted in the tumour microenvironment of many solid tumours, was assessed. Our results showed that digestion with cathepsin B led to nanoparticle size reduction. In the absence of ultrasound, the formulation exhibited greater toxicity at acidic pH than at physiological pH, using the human prostate cells lines LNCaP and PC3 as targets. Nanoparticle cellular uptake was enhanced at acidic pH – a condition that was also associated with greater cathepsin B production. Nanoparticles exhibited enhanced ultrasound-induced cytotoxicity against both prostate cancer cell lines. Subsequent proof-of-concept in vivo studies demonstrated that, when ectopic human xenograft LNCaP tumours in SCID mice were treated with SDT using the systemically-administered nanoparticulate formulation at a single dose, tumour volumes decreased by up to 64% within 24 h. No adverse effects were observed in the nanoparticle-treated mice and their body weight remained stable. The potential of this novel formulation to deliver safe and effective treatment of prostate cancer is discussed. Digestion by cathepsin B leads to nanoparticle size reduction. The acidic pH facilitates improved cellular uptake of the nanoparticles. Ultrasound–induced cytotoxic effects were elicited only for the nanoparticle-treated prostate cancer cells. Sonodynamic treatment resulted in an average of 36% reduction in prostate tumour volume, within 24 h.
Collapse
|
32
|
Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT), as a promising noninvasive therapeutic modality, has received ever-increasing attention in recent years. Its specialized chemical agents, named sonosensitizers, are activated by low-intensity US to produce lethal reactive oxygen species (ROS) for oncotherapy. Compared with phototherapeutic strategies, SDT provides many noteworthy opportunities and benefits, such as deeper penetration depth, absence of phototoxicity, and fewer side effects. Nevertheless, previous studies have also demonstrated its intrinsic limitations. Thanks to the facile engineering nature of nanotechnology, numerous novel nanoplatforms are being applied in this emerging field to tackle these intrinsic barriers and achieve continuous innovations. In particular, the combination of SDT with other treatment strategies has demonstrated a superior efficacy in improving anticancer activity relative to that of monotherapies alone. Therefore, it is necessary to summarize the nanomaterial-assisted combinational sonodynamic cancer therapy applications. Herein, the design principles in achieving synergistic therapeutic effects based on nanomaterial engineering methods are highlighted. The ultimate goals are to stimulate the design of better-quality combined sonodynamic treatment schemes and provide innovative ideas for the perspectives of SDT in promoting its future transformation to clinical application.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
33
|
Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis Photodyn Ther 2020; 31:101834. [PMID: 32464265 DOI: 10.1016/j.pdpdt.2020.101834] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is a treatment to deal with microorganisms, which is limited to treating microbial biofilms due to poor light penetration. Sonodynamic antimicrobial chemotherapy (SACT) can be used for circumventing the limitations of aPDT to inhibit the polymicrobial biofilms. The objective of this study has been focused on the simultaneous use of aPDT and SACT, which is called photo-sonodynamic antimicrobial chemotherapy (P-SACT) to inhibit the biofilms of periopathogens bacteria on surfaces of the titanium dental implants. MATERIALS AND METHODS Following synthesis and confirmation of Chitosan Nanoparticles-Indocyanine green (CNPs-ICG) as photo-sonosensitizer, the mature biofilm model of the polymicrobial synergism of periopathogens was formed on the surface of the titanium dental implants. The quantitative and qualitative evaluations of periopathogens biofilms were performed using microbial viability and scanning electron microscopy analysis of the following groups of treatment modalities (n = 5): 1- Control (periopathogens biofilm without treatment), 2- ICG, 3- CNPs-ICG, 4- diode laser, 5- aPDT/ICG, 6- aPDT/CNPs-ICG, 7- ultrasound, 8- SACT/ICG, 9- SACT/CNPs-ICG, 10- PSACT/ICG, 11- PSACT/CNPs-ICG, and 12-0.2% chlorhexidine (CHX). RESULTS A significant reduction in the log10 CFU/mL of periopathogens was observed in the groups treated with aPDT/ICG, aPDT/CNPs-ICG, SACT/ICG, SACT/CNPs-ICG, PSACT/ICG, PSACT/CNPs-ICG, and 0.2% CHX up to 5.3, 6.5, 5.6, 6.6, and 8.8 log, respectively, when compared with control group (P < 0.05). PSACT/CNPs-ICG group demonstrated significantly higher capacity in eliminating the periopathogens biofilm compared with other groups (P < 0.05). However, there was no significant difference between PSACT/CNPs-ICG and 0.2% CHX (P > 0.05). Microscopic images revealed that biofilms treated with PSACT were comprised mainly of deformed and dead cells. CONCLUSIONS These results highlight the potential of PSACT/CNPs-ICG for the decontamination of the dental implant surfaces from the polymicrobial synergism of periopathogens biofilm.
Collapse
|
34
|
Affiliation(s)
- Tim Maisch
- Department of DermatologyUniversity Medical Center Regensburg Regensburg Germany
| |
Collapse
|
35
|
Xie W, Zhu S, Yang B, Chen C, Chen S, Liu Y, Nie X, Hao L, Wang Z, Sun J, Chang S. The Destruction Of Laser-Induced Phase-Transition Nanoparticles Triggered By Low-Intensity Ultrasound: An Innovative Modality To Enhance The Immunological Treatment Of Ovarian Cancer Cells. Int J Nanomedicine 2019; 14:9377-9393. [PMID: 31819438 PMCID: PMC6896924 DOI: 10.2147/ijn.s208404] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photodynamic therapy (PDT), sonodynamic therapy (SDT), and oxaliplatin (OXP) can induce immunogenic cell death (ICD) following damage-associated molecular patterns (DAMPs) exposure or release and can be united via the use of nanoplatforms to deliver drugs that can impart anti-tumor effects. The aim of this study was to develop phase-transition nanoparticles (OI_NPs) loaded with perfluoropentane (PFP), indocyanine green (ICG), and oxaliplatin (OXP), to augment anti-tumor efficacy and the immunological effects of chemotherapy, photodynamic therapy and sonodynamic therapy (PSDT). Methods OI_NPs were fabricated by a double emulsion method and a range of physicochemical and dual-modal imaging features were characterized. Confocal microscopy and flow cytometry were used to determine the cellular uptake of OI_NPs by ID8 cells. The viability and apoptotic rate of ID8 cells were investigated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry. Flow cytometry, Western blotting, and luminometric assays were then used to investigate the exposure or release of crucial DAMPs such as calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine-5ʹ-triphosphate (ATP). Tumor rechallenge experiments were then used to investigate whether treated ID8 cells underwent ICD. Finally, cytotoxic T lymphocyte (CTL) activity was determined by a lactate dehydrogenase (LDH) assay. Results Spherical OI_NPs were able to carry OXP, ICG and PFP and were successfully internalized by ID8 cells. The application of OI_NPs significantly enhanced the phase shift ability of PFP and the optical characteristics of ICG, thus leading to a significant improvement in photoacoustic and ultrasonic imaging. When combined with near-infrared light and ultrasound, the application of OI_NPs led to improved anti-tumor effects on cancer cells, and significantly enhanced the expression of DAMPs, thus generating a long-term anti-tumor effect. Conclusion The application of OI_NPs, loaded with appropriate cargo, may represent a novel strategy with which to increase anti-tumor effects, enhance immunological potency, and improve dual-mode imaging.
Collapse
Affiliation(s)
- Wan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.,Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Biyong Yang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, People's Republic of China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shuning Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xuyuan Nie
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
36
|
Yang M, Yang T, Mao C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew Chem Int Ed Engl 2019; 58:14066-14080. [PMID: 30663185 PMCID: PMC6800243 DOI: 10.1002/anie.201814098] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The viable use of photodynamic therapy (PDT) in cancer therapy has never been fully realized because of its undesirable effects on healthy tissues. Herein we summarize some physicochemical factors that can make PDT a more viable and effective option to provide future oncological patients with better-quality treatment options. These physicochemical factors include light sources, photosensitizer (PS) carriers, microwaves, electric fields, magnetic fields, and ultrasound. This Review is meant to provide current information pertaining to PDT use, including a discussion of in vitro and in vivo studies. Emphasis is placed on the physicochemical factors and their potential benefits in overcoming the difficulty in transitioning PDT into the medical field. Many advanced techniques, such as employing X-rays as a light source, using nanoparticle-loaded stem cells and bacteriophage bio-nanowires as a photosensitizer carrier, as well as integration with immunotherapy, are among the future directions.
Collapse
Affiliation(s)
- Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
37
|
Liu Y, Chen S, Sun J, Zhu S, Chen C, Xie W, Zheng J, Zhu Y, Xiao L, Hao L, Wang Z, Chang S. Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo. Mol Pharm 2019; 16:4104-4120. [PMID: 31517495 DOI: 10.1021/acs.molpharmaceut.9b00339] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging We have successfully fabricated versatile folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles (FA-OINPs) for dual-mode imaging-guided therapy in ovarian cancer cells and subcutaneous xenograft models. FA-OINPs were demonstrated to have great potential as superb contrast agents to enhance ultrasound and photoacoustic (US/PA) imaging in vitro and in vivo. Confocal laser scanning microscopy and flow cytometry analysis verified that FA-OINPs could specifically target SKOV3 ovarian cancer cells and be endocytosed with a remarkable efficiency. Compared with other therapeutic options, FA-OINPs exhibited an excellent therapeutic outcome after exposure to laser and ultrasound. The MTT assay and flow cytometry analysis confirmed that cytotoxicity effects and apoptosis/necrosis rates were significantly increased. The fluorescence microscopy and fluorescence microplate reader detection validated that the generation of intracellular reactive oxygen species (ROS) was dramatically improved. Immunohistochemical analyses of tumor tissues demonstrated the enhanced tumor apoptosis, the decreased vascular endothelial growth factor (VEGF) and microvascular density (MVD) expression, and the decreased expression of CD68 after treatment. The presented results suggest that photo-sonodynamic/photothermal mediated FA-OINPs could provide a promising strategy for synergistic therapy in ovarian cancer with the guidance of US/PA dual-mode imaging.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shuning Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shenyin Zhu
- Department of Pharmacy , the First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Wan Xie
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Yi Zhu
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Linlin Xiao
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Lan Hao
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Zhigang Wang
- Institute of Ultrasound Imaging , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Shufang Chang
- Department of Obstetrics and Gynecology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| |
Collapse
|
38
|
Yang M, Yang T, Mao C. Optimierung photodynamischer Krebstherapien auf der Grundlage physikalisch‐chemischer Faktoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mingying Yang
- College of Animal Science Zhejiang University Hangzhou Zhejiang 310058 China
| | - Tao Yang
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center Institute for Biomedical Engineering, Science and Technology University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| |
Collapse
|
39
|
Zhang Y, Lin L, Liu L, Liu F, Sheng S, Tian H, Chen X. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials 2019; 216:119255. [PMID: 31229855 DOI: 10.1016/j.biomaterials.2019.119255] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Targeted activation or enhancement is an attractive strategy in the design of nano-theranostics. However, the responsiveness of the nanoagents is restricted by the limited levels of intra-tumor stimuli. Herein, we constructed a positive feedback nanoamplifier by encapsulating glucose oxidase (GOx) in the ferric ions contained metal organic framework (MIL-100), and coating the nanoparticles with polydopamine modified hyaluronic acid (HA-PDA). The mechanism of action of the ensuing nanoamplifiers was three pronged: 1) the high intra-tumor acidity accelerated the release of GOx, which consumed endogenous glucose and "starved" the tumors, in addition to aggravating the local acidity and H2O2 levels; 2) the hydroxyl radicals (·OH) generated from the Fenton-like reaction between MIL-100 with H2O2 contributed to the chemodynamic tumor therapy and augmented the O2 microenvironment, which could be speeded up under acid condition; 3) the oxygen (O2) produced in the Fenton-like reaction relieved the intra-tumor hypoxia and ensured the enzymatic reaction of GOx, along with augmenting the photoacoustic signal of nanoamplifier. Preliminary experiments in tumor bearing mice showed that the nanoamplifier not only boosted the local acidity/H2O2/O2 levels in tumor site to successfully suppress the growth of tumors through the self-enhanced chemodynamic/starving therapy, but also achieved the photoacoustic imaging of tumors. Taken together, this novel nanoamplifier with the abilities of self-enhanced tumor imaging and therapy is a promising entrant in the field of anti-tumor theranostics.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Liang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Shu Sheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
40
|
Effects of photodynamic therapy with indocyanine green on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2019; 26:229-234. [DOI: 10.1016/j.pdpdt.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
41
|
Chang N, Qin D, Wu P, Xu S, Wang S, Wan M. IR780 loaded perfluorohexane nanodroplets for efficient sonodynamic effect induced by short-pulsed focused ultrasound. ULTRASONICS SONOCHEMISTRY 2019; 53:59-67. [PMID: 30559082 DOI: 10.1016/j.ultsonch.2018.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 05/13/2023]
Abstract
Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets. Herein, we applied the SPFU sequence and PFH nanodroplets in sonodynamic. A hydrophobic sonosensitizer, IR780 iodine, was loaded inside denatured bovine serum albumin-shelled PFH (PFH@BSA-IR780) nanodroplets. The sonodynamic efficacy was validated by treating HeLa cervical cancer cells. Under SPFU exposure, PFH@BSA-IR780 nanodroplets were highly effective in promoting reactive oxygen species generation and inducing cancer cell death. A significant decrease in cell viability was achieved within just 10 s. Besides the cytotoxicity of ROS, the mechanical bioeffects of inertial cavitation also led to severe cell death resulting from higher acoustic power or the longer treatment time. The application of the SPFU sequence coupled with PFH@BSA-IR780 nanodroplets is a promising strategy for efficient sonodynamic.
Collapse
Affiliation(s)
- Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Pengying Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
42
|
Yan M, Liu Y, Zhu X, Wang X, Liu L, Sun H, Wang C, Kong D, Ma G. Nanoscale Reduced Graphene Oxide-Mediated Photothermal Therapy Together with IDO Inhibition and PD-L1 Blockade Synergistically Promote Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1876-1885. [PMID: 30582788 DOI: 10.1021/acsami.8b18751] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the potential efficacy of immune checkpoint blockade for effective treatment of cancer, this therapeutic modality is not generally curative, and only a fraction of patients respond. Combination approaches provide strategies to target multiple antitumor immune pathways to induce synergistic antitumor immunity. Here, a multi-combination immunotherapy, including photothermal therapy (PTT), indoleamine-2,3-dioxygenase (IDO) inhibition, and programmed cell death-ligand 1 (PD-L1) blockade, is introduced for inducing synergistic antitumor immunity. We designed a multifunctional IDO inhibitor (IDOi)-loaded reduced graphene oxide (rGO)-based nanosheets (IDOi/rGO nanosheets) with the properties to directly kill tumor cells under laser irradiation and in situ trigger antitumor immune response. In vivo experiments further revealed that the triggered immune response can be synergistically promoted by IDO inhibition and PD-L1 blockade; the responses included the enhancement of tumor-infiltrating lymphocytes, including CD45+ leukocytes, CD4+ T cells, CD8+ T cells, and NK cells; the inhibition of the immune suppression activity of regulator T cells (Tregs); and the production of INF-γ. We also demonstrate that the three combinations of PTT, IDO inhibition, and PD-L1 blockade can effectively inhibit the growth of both irradiated tumors and tumors in distant sites without PTT treatment. This work can be thought of as an important proof of concept to target multiple antitumor immune pathways to induce synergistic antitumor immunity.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Graphite/chemistry
- Graphite/pharmacology
- Humans
- Hyperthermia, Induced
- Immunity, Cellular/drug effects
- Immunity, Cellular/radiation effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Phototherapy
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Mengmeng Yan
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Yijia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Xianghui Zhu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Xiaoli Wang
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Lanxia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Hongfan Sun
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Chun Wang
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Deling Kong
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Guilei Ma
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| |
Collapse
|
43
|
Lin H, Li S, Wang J, Chu C, Zhang Y, Pang X, Lv P, Wang X, Zhao Q, Chen J, Chen H, Liu W, Chen X, Liu G. A single-step multi-level supramolecular system for cancer sonotheranostics. NANOSCALE HORIZONS 2019; 4:190-195. [PMID: 32254155 DOI: 10.1039/c8nh00276b] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A multi-level supramolecular system produced by single-step Fe3+-mediated ionic crosslinking self-assembly can overcome the critical issues of current sonodynamic therapy (SDT) and address the need to monitor therapeutic effects in vivo with a non-invasive approach. This rational design of organic sonosensitizer-based formulation shows great potential for clinical SDT against deep-seated cancer.
Collapse
Affiliation(s)
- Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen S, Liu Y, Zhu S, Chen C, Xie W, Xiao L, Zhu Y, Hao L, Wang Z, Sun J, Chang S. Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer. Drug Deliv 2018; 25:1683-1693. [PMID: 30343601 PMCID: PMC6201789 DOI: 10.1080/10717544.2018.1507062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy and photo-sonodynamic therapy (PSDT) can be combined through drug delivery nano-platforms to enhance the anti-tumor efficacy, however, which is limited by hypoxia in tumor, thereby causing chemotherapy resistance. Perfluoropentane (PFP) has the ability to carry oxygen and to enhance ultrasound or photoacoustic imaging after vaporization. Herein, we constructed a kind of nanoparticles (PTX/ICG and oxygen loaded PLGA nanoparticles (PIO_NPs)), which had PFP core carrying oxygen and PLGA shell loaded indocyanine green (ICG) and paclitaxel (PTX). PIO_NPs harbored good optical stability and the ability to transit phase. Moreover, it could rapidly release PTX and generate ROS under the mediation by near-infrared laser and low-intensity ultrasound. The PIO_NPs enhanced contrast of the ultrasound and PA imaging. In particular, PIO_NPs may be used to monitor and guide treatment for the accumulation of PIO_NPs at tumor site can be observed by PA imaging. Compared with PTX or other nanoparticles, PIO_NPs combined with laser and ultrasound (L.U) significantly induced apoptosis of SKOV3 cells and inhibited SKOV3 tumor growth. Therefore, PIO_NPs are of great potential in cancer imaging and therapy.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Linlin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Lan Hao
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
45
|
Shu Y, Song R, Zheng A, Huang J, Chen M, Wang J. Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging. Talanta 2018; 181:278-285. [DOI: 10.1016/j.talanta.2018.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
|
46
|
Ouyang J, Deng L, Chen W, Sheng J, Liu Z, Wang L, Liu YN. Two dimensional semiconductors for ultrasound-mediated cancer therapy: the case of black phosphorus nanosheets. Chem Commun (Camb) 2018; 54:2874-2877. [DOI: 10.1039/c8cc00392k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of two dimensional semiconductors in sonodynamic cancer therapy is firstly investigated on black phosphorus nanosheets.
Collapse
Affiliation(s)
- Jiang Ouyang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Liu Deng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
- State Key Laboratory for Powder Metallurgy
| | - Jianping Sheng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zhenjun Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
- State Key Laboratory for Powder Metallurgy
| |
Collapse
|
47
|
Tang Q, Chang S, Tian Z, Sun J, Hao L, Wang Z, Zhu S. Efficacy of Indocyanine Green-Mediated Sonodynamic Therapy on Rheumatoid Arthritis Fibroblast-like Synoviocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2690-2698. [PMID: 28779958 DOI: 10.1016/j.ultrasmedbio.2017.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Sonodynamic therapy (SDT) has become a new therapeutic method because of its activation of certain sensitizers by ultrasound. Some studies have reported that indocyanine green (ICG) has the characteristics of a sonosensitizer and favorable fluorescence imaging in synovitis of early inflammatory arthritis. In this study, we aimed to investigate the cytotoxic effect of ICG-mediated SDT on MH7A cells in vitro and the potential mechanisms involved. ICG was found to be taken up mainly in cytoplasm, with maximal uptake in 4 h. Cell viability in ICG-mediated SDT (SDT-0.5 and SDT-1.0) groups decreased significantly to 73.09 ± 1.97% and 54.24 ± 4.66%, respectively; cell apoptosis increased significantly to 26.43 ± 0.91% and 45.93 ± 6.17%, respectively. Moreover, marked loss in mitochondrial membrane potential and greatly increased generation of reactive oxygen species were observed in ICG-mediated SDT groups. Interestingly, the loss in cell viability could be effectively rescued with pretreatment with the reactive oxygen species scavenger N-acetylcysteine. These results indicate that ICG-mediated SDT is cytotoxic to fibroblast-like synoviocytes and is a potential modality for targeted therapy of synovitis in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhonghua Tian
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Hao
- Department of Ultrasound, Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenyin Zhu
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Wu Q, Chen X, Jia L, Wang Y, Sun Y, Huang X, Shen Y, Wang J. Ultrasonic irradiation enhanced the ability of Fluorescein-DA-Fe(III) on sonodynamic and sonocatalytic damages of DNA molecules. ULTRASONICS SONOCHEMISTRY 2017; 39:1-11. [PMID: 28732924 DOI: 10.1016/j.ultsonch.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
The interaction of DNA with Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III) (Fluorescein-DA-Fe(III)) with dual functional (sonodynamic and sonocatalytic) activity was studied by UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, circular dichroism (CD) spectroscopy and viscosity measurements. And then, the damage of DNA caused by Fluorescein-DA-Fe(III) under ultrasonic irradiation (US) was researched by agarose gel electrophoresis and cytotoxicity assay. Meanwhile, some influenced factors such as ultrasonic irradiation time and Fluorescein-DA-Fe(III) concentration on the damage degree of DNA molecules were also examined. As a control, for Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein (Fluorescein-DA), the same experiments were carried out. The results showed that both Fluorescein-DA-Fe(III) and Fluorescein-DA can interact with DNA molecules. Under ultrasonic irradiation, Fluorescein-DA shows sonodynamic activity, which can damage DNA molecules. While, in the presence of Fe(III) ion, the Fluorescein-DA-Fe(III) displays not only sonodynamic activity but also sonocatalytic activity under ultrasonic irradiation, which injures DNA more serious than Fluorescein-DA. The researches confirmed the dual function (sonodynamic activity and sonocatalytic activity) of Fluorescein-DA-Fe(III) and expanded the usage of Fluorescein-DA-Fe(III) as a sonosensitizer in sonodynamic therapy (SDT).
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Xia Chen
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Lizhen Jia
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yi Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Ying Sun
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xingjun Huang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yuxiang Shen
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
49
|
Ma R, Wu Q, Si T, Chang S, Xu RX. Oxygen and Indocyanine Green loaded microparticles for dual-mode imaging and sonodynamic treatment of cancer cells. ULTRASONICS SONOCHEMISTRY 2017; 39:197-207. [PMID: 28732936 DOI: 10.1016/j.ultsonch.2017.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Oxygen and Indocyanine Green (ICG) loaded microparticles (OI-MPs) were fabricated by a gas-driven coaxial flow focusing (CFF) process for dual-mode imaging and sonodynamic therapy (SDT). The produced OI-MPs agent showed stable optical properties, superior imaging depth in near infrared (NIR) fluorescence imaging, and enhanced acoustic contrast after ultrasound mediation. We hypothesized that encapsulating ICG and oxygen in microparticles would enhance reactive oxygen species (ROS) production in SDT. This hypothesis was validated in a cell-free environment. We further hypothesized that ultrasound mediated fragmentation of the OI-MPs would induce cytotoxicity and apoptosis of cancer cells. This hypothesis was validated in SKOV3 ovarian cancer cells. Our research demonstrated that OI-MPs can be potentially used as a dual-mode theranostic agent for image guided SDT with enhanced efficacy. Further study is needed to delineate the mechanism of ROS-induced cell apoptosis and optimize the OI-MPs formulation for the maximal anti-cancer potency.
Collapse
Affiliation(s)
- Rong Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiang Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Ronald X Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
The integration of triggered drug delivery with real time quantification using FRET; creating a super ‘smart’ drug delivery system. J Control Release 2017; 264:136-144. [DOI: 10.1016/j.jconrel.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|