1
|
Rosier N, Mönnich D, Nagl M, Schihada H, Sirbu A, Konar N, Reyes-Resina I, Navarro G, Franco R, Kolb P, Annibale P, Pockes S. Shedding Light on the D 1 -Like Receptors: A Fluorescence-Based Toolbox for Visualization of the D 1 and D 5 Receptors. Chembiochem 2024; 25:e202300658. [PMID: 37983731 DOI: 10.1002/cbic.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.
Collapse
Affiliation(s)
- Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Alexei Sirbu
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Nergis Konar
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Scotland, UK
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
2
|
Ahmed-Belkacem R, Hausdorff M, Delpal A, Sutto-Ortiz P, Colmant AMG, Touret F, Ogando NS, Snijder EJ, Canard B, Coutard B, Vasseur JJ, Decroly E, Debart F. Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues. J Med Chem 2022; 65:6231-6249. [PMID: 35439007 PMCID: PMC9045040 DOI: 10.1021/acs.jmedchem.2c00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/15/2022]
Abstract
Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.
Collapse
Affiliation(s)
| | - Marcel Hausdorff
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| | - Adrien Delpal
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | | | - Agathe M. G. Colmant
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Franck Touret
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Natacha S. Ogando
- Department
of Medical Microbiology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Eric J. Snijder
- Department
of Medical Microbiology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bruno Canard
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | - Bruno Coutard
- IHU
Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, IRD 190, INSERM 1207, 13005 Marseille, France
| | - Jean-Jacques Vasseur
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| | - Etienne Decroly
- AFMB,
University of Aix-Marseille, CNRS, 13288 Marseille, cedex 9, France
| | - Françoise Debart
- IBMM,
University of Montpellier, CNRS, ENSCM, 34293 Montpellier, cedex 5, France
| |
Collapse
|
3
|
Jiang Y, Chen G, Li XM, Liu S, Tian G, Li Y, Li X, Li H, Li XD. Selective Targeting of AF9 YEATS Domain by Cyclopeptide Inhibitors with Preorganized Conformation. J Am Chem Soc 2020; 142:21450-21459. [DOI: 10.1021/jacs.0c10324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yixiang Jiang
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Guochao Chen
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Meng Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
4
|
Wang C, Xu P, Zhang L, Huang J, Zhu K, Luo C. Current Strategies and Applications for Precision Drug Design. Front Pharmacol 2018; 9:787. [PMID: 30072901 PMCID: PMC6060444 DOI: 10.3389/fphar.2018.00787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Since Human Genome Project (HGP) revealed the heterogeneity of individuals, precision medicine that proposes the customized healthcare has become an intractable and hot research. Meanwhile, as the Precision Medicine Initiative launched, precision drug design which aims at maximizing therapeutic effects while minimizing undesired side effects for an individual patient has entered a new stage. One of the key strategies of precision drug design is target based drug design. Once a key pathogenic target is identified, rational drug design which constitutes the major part of precision drug design can be performed. Examples of rational drug design on novel druggable targets and protein-protein interaction surfaces are summarized in this review. Besides, various kinds of computational modeling and simulation approaches increasingly benefit for the drug discovery progress. Molecular dynamic simulation, drug target prediction and in silico clinical trials are discussed. Moreover, due to the powerful ability in handling high-dimensional data and complex system, deep learning has efficiently promoted the applications of artificial intelligence in drug discovery and design. In this review, deep learning methods that tailor to precision drug design are carefully discussed. When a drug molecule is discovered, the development of specific targeted drug delivery system becomes another key aspect of precision drug design. Therefore, state-of-the-art techniques of drug delivery system including antibody-drug conjugates (ADCs), and ligand-targeted conjugates are also included in this review.
Collapse
Affiliation(s)
- Chen Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Luyu Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Huang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Technological advances for interrogating the human kinome. Biochem Soc Trans 2017; 45:65-77. [PMID: 28202660 DOI: 10.1042/bst20160163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022]
Abstract
There is increasing appreciation among researchers and clinicians of the value of investigating biology and pathobiology at the level of cellular kinase (kinome) activity. Kinome analysis provides valuable opportunity to gain insights into complex biology (including disease pathology), identify biomarkers of critical phenotypes (including disease prognosis and evaluation of therapeutic efficacy), and identify targets for therapeutic intervention through kinase inhibitors. The growing interest in kinome analysis has fueled efforts to develop and optimize technologies that enable characterization of phosphorylation-mediated signaling events in a cost-effective, high-throughput manner. In this review, we highlight recent advances to the central technologies currently available for kinome profiling and offer our perspectives on the key challenges remaining to be addressed.
Collapse
|
6
|
PKC in Regenerative Therapy: New Insights for Old Targets. Pharmaceuticals (Basel) 2017; 10:ph10020046. [PMID: 28524095 PMCID: PMC5490403 DOI: 10.3390/ph10020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults often result in severe clinical complications (i.e., infections and/or amputation) and sometimes lead to patient death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules in wound-healing.
Collapse
|
7
|
Zambaldo C, Daguer JP, Saarbach J, Barluenga S, Winssinger N. Screening for covalent inhibitors using DNA-display of small molecule libraries functionalized with cysteine reactive moieties. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00242k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Discriminating between non-covalent and covalent inhibitors with SDS wash in microarray-based screen.
Collapse
Affiliation(s)
- C. Zambaldo
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - J.-P. Daguer
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - J. Saarbach
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - S. Barluenga
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - N. Winssinger
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| |
Collapse
|
8
|
Zhan P, Itoh Y, Suzuki T, Liu X. Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. J Med Chem 2015; 58:7611-33. [PMID: 26086931 DOI: 10.1021/acs.jmedchem.5b00229] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
9
|
van Wandelen LTM, van Ameijde J, Ismail-Ali AF, van Ufford HC(LQ, Vijftigschild LAW, Beekman JM, Martin NI, Ruijtenbeek R, Liskamp RMJ. Cell-penetrating bisubstrate-based protein kinase C inhibitors. ACS Chem Biol 2013; 8:1479-87. [PMID: 23621550 DOI: 10.1021/cb300709g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although protein kinase inhibitors present excellent pharmaceutical opportunities, lack of selectivity and associated therapeutic side effects are common. Bisubstrate-based inhibitors targeting both the high-selectivity peptide substrate binding groove and the high-affinity ATP pocket address this. However, they are typically large and polar, hampering cellular uptake. This paper describes a modular development approach for bisubstrate-based kinase inhibitors furnished with cell-penetrating moieties and demonstrates their cellular uptake and intracellular activity against protein kinase C (PKC). This enzyme family is a longstanding pharmaceutical target involved in cancer, immunological disorders, and neurodegenerative diseases. However, selectivity is particularly difficult to achieve because of homology among family members and with several related kinases, making PKC an excellent proving ground for bisubstrate-based inhibitors. Besides the pharmacological potential of the novel cell-penetrating constructs, the modular strategy described here may be used for discovering selective, cell-penetrating kinase inhibitors against any kinase and may increase adoption and therapeutic application of this promising inhibitor class.
Collapse
Affiliation(s)
- Loek T. M. van Wandelen
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jeroen van Ameijde
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ahmed F. Ismail-Ali
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - H. C. (Linda) Quarles van Ufford
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Nathaniel I. Martin
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- PamGene International Ltd., Wolvenhoek 10, PO Box 1345, 5200 BJ, ’s
Hertogenbosch, The Netherlands
| | - Rob M. J. Liskamp
- Medicinal Chemistry and Chemical
Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|