1
|
Ludwig FA, Laurini E, Schmidt J, Pricl S, Deuther-Conrad W, Wünsch B. [ 18F]Fluspidine-A PET Tracer for Imaging of σ 1 Receptors in the Central Nervous System. Pharmaceuticals (Basel) 2024; 17:166. [PMID: 38399380 PMCID: PMC10892410 DOI: 10.3390/ph17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
σ1 receptors play a crucial role in various neurological and neurodegenerative diseases including pain, psychosis, Alzheimer's disease, and depression. Spirocyclic piperidines represent a promising class of potent σ1 receptor ligands. The relationship between structural modifications and σ1 receptor affinity and selectivity over σ2 receptors led to the 2-fluoroethyl derivative fluspidine (2, Ki = 0.59 nM). Enantiomerically pure (S)-configured fluspidine ((S)-2) was prepared by the enantioselective reduction of the α,β-unsaturated ester 23 with NaBH4 and the enantiomerically pure co-catalyst (S,S)-24. The pharmacokinetic properties of both fluspidine enantiomers (R)-2 and (S)-2 were analyzed in vitro. Molecular dynamics simulations revealed very similar interactions of both fluspidine enantiomers with the σ1 receptor protein, with a strong ionic interaction between the protonated amino moiety of the piperidine ring and the COO- moiety of glutamate 172. The 18F-labeled radiotracers (S)-[18F]2 and (R)-[18F]2 were synthesized in automated syntheses using a TRACERlab FX FN synthesis module. High radiochemical yields and radiochemical purity were achieved. Radiometabolites were not found in the brains of mice, piglets, and rhesus monkeys. While both enantiomers revealed similar initial brain uptake, the slow washout of (R)-[18F]2 indicated a kind of irreversible binding. In the first clinical trial, (S)-[18F]2 was used to visualize σ1 receptors in the brains of patients with major depressive disorder (MDD). This study revealed an increased density of σ1 receptors in cortico-striato-(para)limbic brain regions of MDD patients. The increased density of σ1 receptors correlated with the severity of the depressive symptoms. In an occupancy study with the PET tracer (S)-[18F]2, the selective binding of pridopidine at σ1 receptors in the brain of healthy volunteers and HD patients was shown.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
2
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
3
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
4
|
Huang W, Wang H, Liu B, Shen R, Zhu S. Synthesis of 1,1,4,5-Tetrasubstituted Phthalans via Pd-Catalyzed Three-Component Reactions of Haloarenes, Alkynes, and Protic Nucleophiles. Org Lett 2022; 24:8651-8656. [DOI: 10.1021/acs.orglett.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenliang Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Hong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, People’s Republic of China
| | - Shugao Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| |
Collapse
|
5
|
Wang T, Zhang Y, Zhang X, Chen L, Zheng MQ, Zhang J, Brust P, Deuther-Conrad W, Huang Y, Jia H. Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Systematic asymmetric analog synthesis of fluspidine, a σ1 receptor ligand, to improve ligand affinity. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Jia H, Cai Z, Holden D, He Y, Lin SF, Li S, Baum E, Shirali A, Kapinos M, Gao H, Ropchan J, Huang Y. Positron Emission Tomography Imaging Evaluation of a Novel 18F-Labeled Sigma-1 Receptor Radioligand in Cynomolgus Monkeys. ACS Chem Neurosci 2020; 11:1673-1681. [PMID: 32356969 DOI: 10.1021/acschemneuro.0c00171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a convenient radiosynthesis and the first positron emission tomography (PET) imaging evaluation of [18F]FBFP as a potent sigma-1 (σ1) receptor radioligand with advantageous characteristics. [18F]FBFP was synthesized in one step from an iodonium ylide precursor. In cynomolgus monkeys, [18F]FBFP displayed high brain uptake and suitable tissue kinetics for quantitative analysis. It exhibited heterogeneous distribution with higher regional volume of distribution (VT) values in the amygdala, hippocampus, insula, and frontal cortex. Pretreatment with the σ1 receptor agonist SA4503 (0.5 mg/kg) significantly reduced radioligand uptake in the monkey brain (>95%), indicating high binding specificity of [18F]FBFP in vivo. Compared with (S)-[18F]fluspidine, [18F]FBFP possessed higher regional nondisplaceable binding potential (BPND) values across the brain regions. These findings demonstrate that [18F]FBFP is a highly promising PET radioligand for imaging and quantification of σ1 receptors in humans.
Collapse
Affiliation(s)
- Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Evan Baum
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Anupama Shirali
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Hong Gao
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
Bunse P, Schlepphorst C, Glorius F, Kitamura M, Wünsch B. Short and Atom-Economic Enantioselective Synthesis of the σ 1-Receptor Ligands ( S)- and ( R)-Fluspidine-Important Tools for Positron Emission Tomography Studies. J Org Chem 2019; 84:13744-13754. [PMID: 31523971 DOI: 10.1021/acs.joc.9b01882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aryl bromides 2a and 2b bearing an alkynyl substituent in the o-position reacted with n-butyllithium and 1-benzylpiperidin-4-one in a one-pot Domino reaction to form ester 3 and aldehyde 5, respectively. Enantiomeric alcohols (R)-8 and (S)-8 were obtained by conjugate NaBH4 reduction of α,β-unsaturated ester 3 in the presence of chiral cocomplexes (R,R)-10 and (S,S)-10. Starting from orthoester 2a, the precursors (R)-8 and (S)-8 for the synthesis of fluspidine enantiomers (R)-1/[18F](R)-1 and (S)-1/[18F](S)-1 were obtained in only two reaction steps without additional steps for N-protection in an atom-economic manner in 95.6% ee and 97.2% ee, respectively.
Collapse
Affiliation(s)
- Paul Bunse
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences and Research Center for Materials Science , Nagoya University , Chikusa, Nagoya 464-8601 , Japan
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM) , Westfälische Wilhelms-Universität Münster , D-48149 Münster , Germany
| |
Collapse
|
9
|
Ludwig FA, Fischer S, Houska R, Hoepping A, Deuther-Conrad W, Schepmann D, Patt M, Meyer PM, Hesse S, Becker GA, Zientek FR, Steinbach J, Wünsch B, Sabri O, Brust P. In vitro and in vivo Human Metabolism of ( S)-[ 18F]Fluspidine - A Radioligand for Imaging σ 1 Receptors With Positron Emission Tomography (PET). Front Pharmacol 2019; 10:534. [PMID: 31263411 PMCID: PMC6585474 DOI: 10.3389/fphar.2019.00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
(S)-[18F]fluspidine ((S)-[18F]1) has recently been explored for positron emission tomography (PET) imaging of sigma-1 receptors in humans. In the current report, we have used plasma samples of healthy volunteers to investigate the radiometabolites of (S)-[18F]1 and elucidate their structures with LC-MS/MS. For the latter purpose additional in vitro studies were conducted by incubation of (S)-[18F]1 and (S)-1 with human liver microsomes (HLM). In vitro metabolites were characterized by interpretation of MS/MS fragmentation patterns from collision-induced dissociation or by use of reference compounds. Thereby, structures of corresponding radio-HPLC-detected radiometabolites, both in vitro and in vivo (human), could be identified. By incubation with HLM, mainly debenzylation and hydroxylation occurred, beside further mono- and di-oxygenations. The product hydroxylated at the fluoroethyl side chain was glucuronidated. Plasma samples (10, 20, 30 min p.i., n = 5-6), obtained from human subjects receiving 250–300 MBq (S)-[18F]1 showed 97.2, 95.4, and 91.0% of unchanged radioligand, respectively. In urine samples (90 min p.i.) the fraction of unchanged radioligand was only 2.6% and three major radiometabolites were detected. The one with the highest percentage, also found in plasma, matched the glucuronide formed in vitro. Only a small amount of debenzylated metabolite was detected. In conclusion, our metabolic study, in particular the high fractions of unchanged radioligand in plasma, confirms the suitability of (S)-[18F]1 as PET radioligand for sigma-1 receptor imaging.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Richard Houska
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | | | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Dirk Schepmann
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | | | - Franziska Ruth Zientek
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | - Jörg Steinbach
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| |
Collapse
|
10
|
Chen D, Chemler SR. Synthesis of Phthalans Via Copper-Catalyzed Enantioselective Cyclization/Carboetherification of 2-Vinylbenzyl Alcohols. Org Lett 2018; 20:6453-6456. [PMID: 30336677 DOI: 10.1021/acs.orglett.8b02766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Enantiomerically enriched phthalans were synthesized efficiently via an enantioselective copper-catalyzed alkene carboetherification reaction. In this reaction, 2-vinylbenzyl alcohols enantioselectively cyclize then couple with vinylarenes. The utility of the method was demonstrated by the enantioselective synthesis of ( R)-fluspidine, a σ1 receptor ligand.
Collapse
Affiliation(s)
- Dake Chen
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260 , United States
| | - Sherry R Chemler
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260 , United States
| |
Collapse
|
11
|
Nakane S, Yoshinaka S, Iwase S, Shuto Y, Bunse P, Wünsch B, Tanaka S, Kitamura M. Synthesis of fluspidine via asymmetric NaBH4 reduction of silicon enolates of β-keto esters. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Kranz M, Bergmann R, Kniess T, Belter B, Neuber C, Cai Z, Deng G, Fischer S, Zhou J, Huang Y, Brust P, Deuther-Conrad W, Pietzsch J. Bridging from Brain to Tumor Imaging: (S)-(-)- and (R)-(+)-[ 18F]Fluspidine for Investigation of Sigma-1 Receptors in Tumor-Bearing Mice. Molecules 2018; 23:E702. [PMID: 29558382 PMCID: PMC6017399 DOI: 10.3390/molecules23030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S)-(-)- and (R)-(+)-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously) implanted tumors. Therefore, a brain tumor model (U87-MG) with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mathias Kranz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Ralf Bergmann
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Birgit Belter
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Zhengxin Cai
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Gang Deng
- Department of Neurosurgery and Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Jiangbing Zhou
- Department of Neurosurgery and Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Yiyun Huang
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Fanter L, Schepmann D, Wünsch B. Solid-phase organic synthesis of chiral, non-racemic 1,2,4-trisubstituted 1,4-diazepanes with high σ 1 receptor affinity. Arch Pharm (Weinheim) 2018; 351. [PMID: 29226992 DOI: 10.1002/ardp.201700334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022]
Abstract
The aim of this work was to transfer the established chiral-pool synthesis of 1,2,4-trisubstituted 1,4-diazepanes in solution on the solid phase. For this purpose, (S)-configured amino acids, (S)-alanine, and (S)-leucine, with a small methyl and a larger isobutyl moiety were attached to the solid support 9 by reductive amination. After five reaction steps on the solid support, the 1,4-diazepanes (S)-19a,b were cleaved off and reductively alkylated to afford the 1,2,4-trisubstituted 1,4-diazepanes (S)-20a and (S)-21b, respectively. Both compounds show high σ1 affinity and selectivity over the σ2 subtype.
Collapse
Affiliation(s)
- Lena Fanter
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
14
|
Kokornaczyk AK, Schepmann D, Yamaguchi J, Itami K, Laurini E, Fermeglia M, Pricl S, Wünsch B. Thiazole-Based σ 1 Receptor Ligands: Diversity by Late-Stage C-H Arylation of Thiazoles, Structure-Affinity and Selectivity Relationships, and Molecular Interactions. ChemMedChem 2017; 12:1070-1080. [PMID: 28544475 DOI: 10.1002/cmdc.201700166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Indexed: 12/25/2022]
Abstract
Spirocyclic thiophene derivatives represent promising σ1 ligands with high σ1 affinity and selectivity over the σ2 subtype. To increase ligand efficiency, the thiophene ring was replaced bioisosterically by a thiazole ring, and the pyran ring was opened. Late-stage diversification by regioselective C-H arylation of thiazoles 9 a-c resulted in a set of 53 compounds with high diversity. This set of compounds was analyzed with respect to σ1 affinity, σ1 /σ2 selectivity, lipophilicity (logD7.4 ), lipophilicity-corrected ligand efficiency (LELP), and molecular target interactions. The most promising candidates were pyridyl-substituted thiazole derivatives 33 c (2-(1-benzyl-4-ethoxypiperidin-4-yl)-5-(pyridin-3-yl)thiazole) and 34 c (2-(1-benzyl-4-ethoxypiperidin-4-yl)-5-(pyridin-4-yl)thiazole), possessing low-nanomolar σ1 affinity (Ki =1.3 and 1.9 nm), high σ1 /σ2 selectivity (>1500-fold), low lipophilicity (logD7.4 =1.8) and very good ligand efficiency (LELP=5.5), indicating promising pharmacodynamics and pharmacokinetics. Molecular simulation studies, including docking and deconvolution of the free binding energy into its major components, led to decreased hydrophobic stabilization of pyridyl derivatives 33 c and 34 c, which was compensated by lower desolvation energy.
Collapse
Affiliation(s)
- Artur K Kokornaczyk
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
15
|
Knappmann I, Lehmkuhl K, Köhler J, Schepmann D, Giera M, Bracher F, Wünsch B. Lipase-catalyzed kinetic resolution as key step in the synthesis of enantiomerically pure σ ligands with 2-benzopyran structure. Bioorg Med Chem 2017; 25:3384-3395. [DOI: 10.1016/j.bmc.2017.04.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
|
16
|
Baum E, Cai Z, Bois F, Holden D, Lin SF, Lara-Jaime T, Kapinos M, Chen Y, Deuther-Conrad W, Fischer S, Dukic-Stefanovic S, Bunse P, Wünsch B, Brust P, Jia H, Huang Y. PET Imaging Evaluation of Four σ 1 Radiotracers in Nonhuman Primates. J Nucl Med 2017; 58:982-988. [PMID: 28232607 DOI: 10.2967/jnumed.116.188052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
The σ1 receptors (S1Rs) are implicated in a variety of diseases including Alzheimer disease and cancer. Previous PET S1R radiotracers are characterized by slow kinetics or off-target binding that impedes their use in humans. Here, we report the first PET imaging evaluation in rhesus monkeys of 4 18F-labeled spirocyclic piperidine-based PET radiotracers (18F-1 to 18F-4). Methods: Baseline scans for the 4 radiotracers were obtained on an adult male rhesus monkey. Blocking scans were obtained with the S1R-selective agonist SA4503 to assess binding specificity of 18F-2 and 18F-4 Arterial input functions were measured, and binding parameters were determined with kinetic modeling analysis. Results: In the rhesus brain, all 4 radiotracers showed high and fast uptake. Tissue activity washout was rapid for 18F-2 and 18F-4, and much slower for 18F-1 and 18F-3, in line with their respective in vitro S1R-binding affinities. Both the 1-tissue-compartment and multilinear analysis-1 kinetic models provided good fits of time-activity curves and reliable estimates of distribution volume. Regional distribution volume values were highest in the cingulate cortex and lowest in the thalamus for all radiotracers. 18F-4 showed greater differential uptake across brain regions and 3-fold-higher binding potential than 18F-2 SA4503 at the dose of 0.5 mg/kg blocked approximately 85% (18F-2) and 95% (18F-4) of radiotracer binding. Conclusion: Tracers 18F-2 and 18F-4 displayed high brain uptake and fast tissue kinetics, with 18F-4 having higher specific binding signals than 18F-2 in the same monkey. Taken together, these data indicate that both 18F-2 and 18F-4 possess the requisite kinetic and imaging properties as viable PET tracers for imaging S1R in the human brain.
Collapse
Affiliation(s)
- Evan Baum
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Frederic Bois
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Shu-Fei Lin
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Teresa Lara-Jaime
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Michael Kapinos
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Yuanyuan Chen
- Ministry of Education Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany; and
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany; and
| | - Sladjana Dukic-Stefanovic
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany; and
| | - Paul Bunse
- Department of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany; and
| | - Hongmei Jia
- Ministry of Education Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| |
Collapse
|
17
|
Weber F, Wünsch B. Medicinal Chemistry of σ 1 Receptor Ligands: Pharmacophore Models, Synthesis, Structure Affinity Relationships, and Pharmacological Applications. Handb Exp Pharmacol 2017; 244:51-79. [PMID: 28620761 DOI: 10.1007/164_2017_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In the first part of this chapter, we summarize the various pharmacophore models for σ1 receptor ligands. Common to all of them is a basic amine flanked by two hydrophobic regions, representing the pharmacophoric elements. The development of computer-based models like the 3D homology model is described as well as the first crystal structure of the σ1 receptor. The second part focuses on the synthesis and biological properties of different σ1 receptor ligands, identified as 1-9. Monocyclic piperazines 1 and bicyclic piperazines 2 and 3 were developed as cytotoxic compounds, thus the IC50 values of cell growth and survival inhibition studies are given for all derivatives. The mechanism of cell survival inhibition, induction of time-dependent apoptosis, of compound ent-2a is discussed. Experimentally determined σ1 affinity shows good correlation with the results from molecular dynamics simulations based on a 3D homology model. Spirocyclic compounds 4 and 5 represent well-established σ1 receptor ligands. The homologous fluoroalkyl derivatives 4 have favorable pharmacological properties for use as fluorinated PET tracers. The (S)-configured fluoroethyl substituted compound (S)-4b is under investigation as PET tracer for imaging of σ1 receptors in the brain of patients affected by major depression. 1,3-Dioxanes 6c and 6d display a very potent σ1 antagonist profile and the racemic 1,3-dioxane 6c has high anti-allodynic activity at low doses. The arylpropenylamines 7 are very potent σ1 receptor ligands with high σ1/σ2 selectivity. The top compound 7g acts as an agonist as defined by its ability to potentiate neurite outgrowth at low concentrations. Among the morpholinoethoxypyrazoles 8, 8c (known as S1RA) reveals the most promising pharmacokinetic and physicochemical properties. Due to its good safety profile, 8c is currently being investigated in a phase II clinical trial for the treatment of neuropathic pain. The most potent ligand 9e of 3,4-dihydro-2(1H)-quinolones 9 shows promising anti-nociceptive activity in the formalin test.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany.
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CIM), University Münster, Münster, Germany
| |
Collapse
|
18
|
Weber F, Brust P, Laurini E, Pricl S, Wünsch B. Fluorinated PET Tracers for Molecular Imaging of σ 1 Receptors in the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:31-48. [PMID: 28315263 DOI: 10.1007/978-3-319-50174-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At first the role of σ1 receptors in various neurological, psychiatric and neurodegenerative disorders is discussed. In the second part, the principle of positron emission tomography (PET ) is described and the known fluorinated PET tracers for labeling of σ1 receptors are presented. The third part focuses on fluoroalkyl substituted spirocyclic PET tracers, which represent the most promising class of fluorinated PET tracers reported so far. The homologous fluoroalkyl derivatives 12-15 show high σ1 affinity (K i = 0.59-1.4 nM) and high selectivity over the σ2 subtype (408-1331-fold). The enantiomers of the fluoroethyl derivative fluspidine 13 were prepared and pharmacologically characterized. Whereas the (S)-configured enantiomer (S)-13 (K i = 2.3 nM) is 4-fold less active than the (R)-enantiomer (R)-13 (K i = 0.57 nM), (S)-13 is metabolically more stable. The interactions of (S)-13 and (R)-13 with the σ1 receptor were analyzed at the molecular level using the 3D homology model. In an automated radiosynthesis [18F](S)-13 and [18F](R)-13 were prepared by nucleophilic substitution of the tosylates (S)-17 and (R)-17 with K[18F]F in high radiochemical yield, high radiochemical purity and short reaction time. Application of both enantiomers [18F](S)-13 and [18F](R)-13 to mice and piglets led to fast uptake into the brain, but [18F](R)-13 did not show washout from the brain indicating a quasi-irreversible binding. Both radiotracers [18F](S)-13 and [18F](R)-13 were able to label regions in the mouse and piglet brain with high σ1 receptor density. The specific binding of the enantiomeric tracers [18F](S)-13 and [18F](R)-13 could be replaced by the selective σ1 ligand SA4503.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 6, 34127, Trieste, Italy
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127, Trieste, Italy
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University Münster, Münster, Germany.
| |
Collapse
|
19
|
Wiese C, Große Maestrup E, Galla F, Schepmann D, Hiller A, Fischer S, Ludwig FA, Deuther-Conrad W, Donat CK, Brust P, Büter L, Karst U, Wünsch B. Comparison of in Silico, Electrochemical, in Vitro and in Vivo Metabolism of a Homologous Series of (Radio)fluorinated σ 1 Receptor Ligands Designed for Positron Emission Tomography. ChemMedChem 2016; 11:2445-2458. [PMID: 27677767 DOI: 10.1002/cmdc.201600366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/29/2016] [Indexed: 11/05/2022]
Abstract
The imaging of σ1 receptors in the brain by fluorinated radiotracers will be used for the validation of σ1 receptors as drug targets as well as for differential diagnosis of diseases in the central nervous system. The biotransformation of four homologous fluorinated PET tracers 1'-benzyl-3-(ω-fluoromethyl to ω-fluorobutyl)-3H-spiro[2]benzofuran-1,4'-piperidine] ([18 F]1-4) was investigated. In silico studies using fast metabolizer (FAME) software, electrochemical oxidations, in vitro studies with rat liver microsomes, and in vivo metabolism studies after application of the PET tracers [18 F]1-4 to mice were performed. Combined liquid chromatography and mass spectrometry (HPLC-MS) analysis allowed structural identification of non-radioactive metabolites. Radio-HPLC and radio-TLC provided information about the presence of unchanged parent radiotracers and their radiometabolites. Radiometabolites were not found in the brain after application of [18 F]2-4, but liver, plasma, and urine samples contained several radiometabolites. Less than 2 % of the injected dose of [18 F]4 reached the brain, rendering [18 F]4 less appropriate as a PET tracer than [18 F]2 and [18 F]3. Compounds [18 F]2 and [18 F]3 possess the most promising properties for imaging of σ1 receptors in the brain. High σ1 affinity (Ki =0.59 nm), low lipophilicity (logD7.4 =2.57), high brain penetration (4.6 % of injected dose after 30 min), and the absence of radiometabolites in the brain favor the fluoroethyl derivative [18 F]2 slightly over the fluoropropyl derivative [18 F]3 for human use.
Collapse
Affiliation(s)
- Christian Wiese
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Eva Große Maestrup
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Fabian Galla
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Permoserstraße 15, 04318, Leipzig, Germany
| | - Lars Büter
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 100-CiM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Uwe Karst
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 100-CiM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 100-CiM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| |
Collapse
|
20
|
Kranz M, Sattler B, Wüst N, Deuther-Conrad W, Patt M, Meyer PM, Fischer S, Donat CK, Wünsch B, Hesse S, Steinbach J, Brust P, Sabri O. Evaluation of the Enantiomer Specific Biokinetics and Radiation Doses of [(18)F]Fluspidine-A New Tracer in Clinical Translation for Imaging of σ₁ Receptors. Molecules 2016; 21:E1164. [PMID: 27598110 PMCID: PMC6273209 DOI: 10.3390/molecules21091164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/17/2022] Open
Abstract
The enantiomers of [(18)F]fluspidine, recently developed for imaging of σ₁ receptors, possess distinct pharmacokinetics facilitating their use in different clinical settings. To support their translational potential, we estimated the human radiation dose of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine from ex vivo biodistribution and PET/MRI data in mice after extrapolation to the human scale. In addition, we validated the preclinical results by performing a first-in-human PET/CT study using (S)-(-)-[(18)F]fluspidine. Based on the respective time-activity curves, we calculated using OLINDA the particular organ doses (ODs) and effective doses (EDs). The ED values of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine differed significantly with image-derived values obtained in mice with 12.9 μSv/MBq and 14.0 μSv/MBq (p < 0.025), respectively. A comparable ratio was estimated from the biodistribution data. In the human study, the ED of (S)-(-)-[(18)F]fluspidine was calculated as 21.0 μSv/MBq. Altogether, the ED values for both [(18)F]fluspidine enantiomers determined from the preclinical studies are comparable with other (18)F-labeled PET imaging agents. In addition, the first-in-human study confirmed that the radiation risk of (S)-(-)-[(18)F]fluspidine imaging is within acceptable limits. However, as already shown for other PET tracers, the actual ED of (S)-(-)-[(18)F]fluspidine in humans was underestimated by preclinical imaging which needs to be considered in other first-in-human studies.
Collapse
Affiliation(s)
- Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Nathanael Wüst
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Philipp M Meyer
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London SW7 2AZ, UK.
| | - Bernhard Wünsch
- Pharmaceutical and Medicinal Chemistry, University Münster, Münster 48149, Germany.
| | - Swen Hesse
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Hospital Leipzig, Leipzig 04103, Germany.
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany.
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig 04103, Germany.
| |
Collapse
|
21
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. Eur J Med Chem 2015; 97:356-76. [PMID: 25703339 DOI: 10.1016/j.ejmech.2015.01.021] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/19/2014] [Accepted: 01/10/2015] [Indexed: 02/08/2023]
Abstract
Benzofuran core is a highly versatile, presents in many important natural products and natural drugs. Many benzofuran containing synthetic drugs and clinical candidates have been derived from natural products. The present review will provide an insight on lead design-developments of the decade, clinical candidates and PET tracer radio-ligands containing benzofuran core along with brief target biology. Brief of the all approved drugs containing benzofuran core also have been enclosed. Main therapeutic areas covered are Cancer, Neurological disorders including anti-psychotic agent and diabetes.
Collapse
|
23
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
24
|
Brust P, Deuther-Conrad W, Becker G, Patt M, Donat CK, Stittsworth S, Fischer S, Hiller A, Wenzel B, Dukic-Stefanovic S, Hesse S, Steinbach J, Wünsch B, Lever SZ, Sabri O. Distinctive in vivo kinetics of the new σ1 receptor ligands (R)-(+)- and (S)-(-)-18F-fluspidine in porcine brain. J Nucl Med 2014; 55:1730-6. [PMID: 25071097 DOI: 10.2967/jnumed.114.137562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Because of their involvement in growth and survival signaling cascades, the σ(1) receptors (σ(1)Rs) represent a novel target for the treatment of cancer and several brain diseases such as depression and neurodegeneration. From a series of σ1R-specific (18)F-fluoroalkylated spirocyclic piperidines, we have chosen (18)F-fluspidine for detailed investigation of the in vivo kinetics of the (R)-(+)- and (S)-(-)-enantiomers to identify their potential for imaging in humans. METHODS Enantiopure tosylate precursors for radiolabeling were obtained using chiral preparative high-performance liquid chromatography and used for radiosynthesis of both (18)F-fluspidine enantiomers by nucleophilic substitution with K-(18)F-F-Kryptofix 222-carbonate complex in a synthesis module. Brain pharmacokinetics were investigated by dynamic PET studies in piglets under baseline and blocking conditions using the highly selective σ1R agonist SA4503. Standardized uptake values (SUVs) were calculated for 24 MR-defined brain regions. Total distribution volume (V(T)) and binding potentials (k3'/k4) of (S)-(-)- and (R)-(+)-(18)F-fluspidine were estimated. Furthermore, V(T) values were estimated by graphical analysis using Logan plots. RESULTS The (S)- and (R)-tosylates were obtained in excellent enantiomeric purities (>98% and >96% enantiomeric excess, respectively). (S)-(-)- and (R)-(+)-(18)F-fluspidine were synthesized within approximately 70 min (radiochemical yield, 35%-45%; specific activity, 650-870 GBq/μmol; radiochemical purity, >99%). Both radiotracers displayed different brain uptake kinetics. Although the initial brain uptake was similar, the SUV at the end of the study differed significantly (P < 0.05), with (R)-(+)-(18)F-fluspidine showing about 60%-150% higher values. Administration of SA4503 reduced SUV almost equally for both radiotracers by approximately 65%. Furthermore, k(3)' was significantly decreased under blocking conditions in almost all regions ((S)-(-)-(18)F-fluspidine, -90%-95%; (R)-(+)-(18)F-fluspidine, -70%-90%) whereas effects on k(4) differed according to the particular brain region. V(T) estimated by both graphical analysis using Logan plots and full nonlinear kinetic analysis revealed significant inhibition for both radiotracers under blocking conditions. CONCLUSION Both (S)-(-)- and (R)-(+)-(18)F-fluspidine appear to be suitable for σ1R imaging in humans. The different pharmacokinetics of (S)-(-)-(18)F-fluspidine and (R)-(+)-(18)F-fluspidine may have the potential for application in the diagnostics of different pathologic conditions.
Collapse
Affiliation(s)
- Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Georg Becker
- Department of Nuclear Medicine and IFB Adiposity Diseases, Universität Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine and IFB Adiposity Diseases, Universität Leipzig, Leipzig, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | | | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Sladjana Dukic-Stefanovic
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine and IFB Adiposity Diseases, Universität Leipzig, Leipzig, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany; and
| | - Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, Missouri MU Research Reactor, University of Missouri, Columbia, Missouri
| | - Osama Sabri
- Department of Nuclear Medicine and IFB Adiposity Diseases, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Holl K, Schepmann D, Fischer S, Ludwig FA, Hiller A, Donat CK, Deuther-Conrad W, Brust P, Wünsch B. Asymmetric Synthesis of Spirocyclic 2-Benzopyrans for Positron Emission Tomography of σ1 Receptors in the Brain. Pharmaceuticals (Basel) 2014; 7:78-112. [PMID: 24451404 PMCID: PMC3915196 DOI: 10.3390/ph7010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/16/2022] Open
Abstract
Sharpless asymmetric dihydroxylation of styrene derivative 6 afforded chiral triols (R)-7 and (S)-7, which were cyclized with tosyl chloride in the presence of Bu2SnO to provide 2-benzopyrans (R)-4 and (S)-4 with high regioselectivity. The additional hydroxy moiety in the 4-position was exploited for the introduction of various substituents. Williamson ether synthesis and replacement of the Boc protective group with a benzyl moiety led to potent σ1 ligands with high σ1/σ2-selectivity. With exception of the ethoxy derivative 16, the (R)-configured enantiomers represent eutomers with eudismic ratios of up to 29 for the ester (R)-18. The methyl ether (R)-15 represents the most potent σ1 ligand of this series of compounds, with a Ki value of 1.2 nM and an eudismic ratio of 7. Tosylate (R)-21 was used as precursor for the radiosynthesis of [18F]-(R)-20, which was available by nucleophilic substitution with K[18F]F K222 carbonate complex. The radiochemical yield of [18F]-(R)-20 was 18%–20%, the radiochemical purity greater than 97% and the specific radioactivity 175–300 GBq/µmol. Although radiometabolites were detected in plasma, urine and liver samples, radiometabolites were not found in brain samples. After 30 min, the uptake of the radiotracer in the brain was 3.4% of injected dose per gram of tissue and could be reduced by coadministration of the σ1 antagonist haloperidol. [18F]-(R)-20 was able to label those regions of the brain, which were reported to have high density of σ1 receptors.
Collapse
Affiliation(s)
- Katharina Holl
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Abteilung Neuroradiopharmaka, Permoserstraße 15, Leipzig D-04318, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany.
| |
Collapse
|