1
|
Pérez-Pérez M, Fuertes A, Montenegro J. Synthetic peptide scaffolds as ion channels and molecular carriers. Curr Opin Chem Biol 2025; 84:102563. [PMID: 39778387 DOI: 10.1016/j.cbpa.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Transmembrane ion exchange controls biological functions and is essential for life. Over the years, a great variety of nature-inspired artificial ion channels and carriers have been synthesized to control and promote ion exchange across biological membranes. In this context, peptides emerged as ideal scaffolds for synthetic ion channels due to their biocompatibility, accessibility and chemical versatility. Peptides have already shown their potential for the construction of a range of synthetic ion transporters either alone or in combination with other molecular scaffolds. Among the great diversity of peptide-based ion transporters, we can find key examples of single-molecule and supramolecular transmembrane ion channels and ionophores. Peptide scaffolds have also found great potential for the transmembrane delivery of biomolecular cargos such as nucleic acids and proteins. This review covers some of the most relevant advances in the peptide-based ion transport field from the last few years.
Collapse
Affiliation(s)
- Manuel Pérez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Alberto Fuertes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Fang ST, Huang SH, Yang CH, Liou JW, Mani H, Chen YC. Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A. Biomolecules 2022; 12:1799. [PMID: 36551225 PMCID: PMC9775247 DOI: 10.3390/biom12121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Gramicidin A (gA) is a linear antimicrobial peptide that can form a channel and specifically conduct monovalent cations such as H+ across the lipid membrane. The antimicrobial activity of gA is associated with the formation of hydroxyl free radicals and the imbalance of NADH metabolism, possibly a consequence caused by the conductance of cations. The ion conductivity of gramicidin A can be blocked by Ca2+ ions. However, the effect of Ca2+ ions on the antimicrobial activity of gA is unclear. To unveil the role of Ca2+ ions, we examined the effect of Ca2+ ions on the antimicrobial activity of gramicidin A against Staphylococcus aureus (S. aureus). Results showed that the antimicrobial mechanism of gA and antimicrobial activity by Ca2+ ions are concentration-dependent. At the low gA concentration (≤1 μM), the antimicrobial mechanism of gA is mainly associated with the hydroxyl free radical formation and NADH metabolic imbalance. Under this mode, Ca2+ ions can significantly inhibit the hydroxyl free radical formation and NADH metabolic imbalance. On the other hand, at high gA concentration (≥5 μM), gramicidin A acts more likely as a detergent. Gramicidin A not only causes an increase in hydroxyl free radical levels and NAD+/NADH ratios but also induces the destruction of the lipid membrane composition. At this condition, Ca2+ ions can no longer reduce the gA antimicrobial activity but rather enhance the bacterial killing ability of gramicidin A.
Collapse
Affiliation(s)
- Shang-Ting Fang
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Shu-Hsiang Huang
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Jen-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Hemalatha Mani
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
3
|
Takada Y, Itoh H, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Discovery of gramicidin A analogues with altered activities by multidimensional screening of a one-bead-one-compound library. Nat Commun 2020; 11:4935. [PMID: 33004797 PMCID: PMC7531004 DOI: 10.1038/s41467-020-18711-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Gramicidin A (1) is a peptide antibiotic that disrupts the transmembrane ion concentration gradient by forming an ion channel in a lipid bilayer. Although long used clinically, it is limited to topical application because of its strong hemolytic activity and mammalian cytotoxicity, likely arising from the common ion transport mechanism. Here we report an integrated high-throughput strategy for discovering analogues of 1 with altered biological activity profiles. The 4096 analogue structures are designed to maintain the charge-neutral, hydrophobic, and channel forming properties of 1. Synthesis of the analogues, tandem mass spectrometry sequencing, and 3 microscale screenings enable us to identify 10 representative analogues. Re-synthesis and detailed functional evaluations find that all 10 analogues share a similar ion channel function, but have different cytotoxic, hemolytic, and antibacterial activities. Our large-scale structure-activity relationship studies reveal the feasibility of developing analogues of 1 that selectively induce toxicity toward target organisms. The strong hemolytic activity and mammalian cytotoxicity of gramicidin A, a peptide antibiotic, has hindered its non-topical clinical application. Here, the authors report a high-throughput strategy for the discovery of gramicidin A analogues with altered biological activity profiles.
Collapse
Affiliation(s)
- Yuri Takada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
5
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
6
|
Mao J, Itoh H, Sakurai K, Inoue M. Phospholipid-Dependent Functions of a Macrocyclic Analogue of the Ion-Channel-Forming Antibiotic Gramicidin A. Chem Pharm Bull (Tokyo) 2020; 68:173-178. [PMID: 32009085 DOI: 10.1248/cpb.c19-00967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An ion-channel-forming natural peptide, gramicidin A (1), exhibits potent antimicrobial activity against Gram-positive bacteria, although medical applications are limited to topical use due to its mammalian cytotoxicity. We recently reported that the artificial macrocyclic analogue 2 provides a promising starting point for developing new ion-channel-based systemic antibacterial agents because of its low mammalian cytotoxicity compared to that of the parent 1. To dissect the molecular factors involved in the species selectivity of 2, we evaluated the ion transport activities, phospholipid affinities, and conformational properties of 1 and 2 using various compositions of phospholipids. A combination of lipid dot blot assays and circular dichroism (CD) analysis with H+/Na+ exchange assays revealed that the higher H+/Na+ exchange activity of 2 than that of 1 in liposomes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) is attributable to its higher affinity towards the phospholipids than that of 1. Notably, we also discovered that 2 showed weaker H+/Na+ exchange activity in liposomes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE). CD analysis of 2 in liposomes indicated that the weak H+/Na+ exchange activity is induced by disturbance of the ion-conducting β6.3-helical conformation in the POPE-containing lipid bilayer. These results suggest that the POPE-induced attenuation of the ion-conducting activity of 2 contributes to the alleviation of undesirable mammalian cytotoxicity of 2 compared to that of 1.
Collapse
Affiliation(s)
- Ji Mao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
7
|
Wisdom EC, Zhou Y, Chen C, Tamerler C, Snead ML. Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties. ACS Biomater Sci Eng 2019; 6:2682-2695. [PMID: 32467858 DOI: 10.1021/acsbiomaterials.9b01213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The integration of molecular and cell biology with materials science has led to strategies to improve the interface between dental implants with the surrounding soft and hard tissues in order to replace missing teeth and restore mastication. More than 3 million implants have been placed in the US alone and this number is rising by 500,000/year. Peri-implantitis, an inflammatory response to oral pathogens growing on the implant surface threatens to reduce service life leading to eventual implant failure, and such an outcome will have adverse impact on public health and create significant health care costs. Here we report a predictive approach to peptide design, which enabled us to engineer a bifunctional peptide to combat bacterial colonization and biofilm formation, reducing the adverse host inflammatory immune response that destroys the tissue surrounding implants and shortens their lifespans. This bifunctional peptide contains a titanium-binding domain that recognizes and binds with high affinity to titanium implant surfaces, fused through a rigid spacer domain with an antimicrobial domain. By varying the antimicrobial peptide domain, we were able to predict the properties of the resulting bifunctional peptides in their entirety by analyzing the sequence-structure-function relationship. These bifunctional peptides achieve: 1) nearly 100% surface coverage within minutes, a timeframe suitable for their clinical application to existing implants; 2) nearly 100% binding to a titanium surface even in the presence of contaminating serum protein; 3) durability to brushing with a commercially available electric toothbrush; and 4) retention of antimicrobial activity on the implant surface following bacterial challenge. A bifunctional peptide film can be applied to both new implants and/or repeatedly applied to previously placed implants to control bacterial colonization mitigating peri-implant disease that threatens dental implant longevity.
Collapse
Affiliation(s)
- E Cate Wisdom
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA
| | - Yan Zhou
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Casey Chen
- Herman Ostrow School of Dentistry of USC, Division of Periodontology, Diagnostic Services, & Dental Hygiene University of Southern California, Los Angeles, USA
| | - Candan Tamerler
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA.,Mechanical Engineering Department, University of Kansas, Lawrence, USA
| | - Malcolm L Snead
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
8
|
Haoyang W, Zhang M, Hou J. Deformylated Gramicidin A and Its Derivatives Showing High Antimicrobial Activity and Low Hemolytic Toxicity. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wei‐Wei Haoyang
- Department of ChemistryFudan University 220 Handan Road, Shanghai 200433 China
| | - Min Zhang
- Department of ChemistryFudan University 220 Handan Road, Shanghai 200433 China
| | - Jun‐Li Hou
- Department of ChemistryFudan University 220 Handan Road, Shanghai 200433 China
| |
Collapse
|
9
|
Khailova LS, Rokitskaya TI, Kovalchuk SI, Kotova ЕА, Sorochkina AI, Antonenko YN. Role of mitochondrial outer membrane in the uncoupling activity of N-terminally glutamate-substituted gramicidin A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:281-287. [PMID: 29940153 DOI: 10.1016/j.bbamem.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
Of a series of gramicidin A (gA) derivatives, we have earlier found the peptide [Glu1]gA exhibiting very low toxicity toward mammalian cells, although dissipating mitochondrial membrane potential with almost the same efficiency as gA. Substitution of glutamate for valine at position 1 of the gA amino acid sequence, which is supposed to interfere with the formation of ion-conducting gA channels via head-to-head dimerization, reduces both channel-forming potency of the peptide in planar lipid bilayer membranes and its photonophoric activity in unilamellar liposomes. Here, we compared [Glu1]gA and gA abilities to cause depolarization of the inner mitochondrial membrane in mitochondria and mitoplasts, the latter lacking the outer mitochondrial membrane. Importantly, much less gA was needed to decrease the membrane potential in mitoplasts than in mitochondria, whereas the depolarizing potency of [Glu1]gA was nearly the same in these systems. Moreover, in multilamellar liposomes, [Glu1]gA exhibited more pronounced protonophoric activity than gA, in contrast to the data for unilamellar liposomes. These results allowed us to conclude that [Glu1]gA has a much higher permeability between adjacent lipid membranes than gA. Therefore, the fraction of peptide molecules, reaching the inner mitochondrial membrane upon the addition to cells, is much higher for [Glu1]gA compared to gА. Under these conditions, the decreased cytotoxicity of [Glu1]gA could be associated with its low efficiency as a channel-former dissipating potassium and sodium ion gradients across plasma membrane. The present study highlighted the role of the ability to permeate among various biological membranes for intracellular efficiency of ionophores.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey I Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Еlena А Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandra I Sorochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
10
|
Reddy DN, Singh S, Ho CMW, Patel J, Schlesinger P, Rodgers S, Doctor A, Marshall GR. Design, synthesis, and biological evaluation of stable β 6.3-Helices: Discovery of non-hemolytic antibacterial peptides. Eur J Med Chem 2018; 149:193-210. [PMID: 29501941 DOI: 10.1016/j.ejmech.2018.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
Gramicidin A, a topical antibiotic made from alternating L and D amino acids, is characterized by its wide central pore; upon insertion into membranes, it forms channels that disrupts ion gradients. We present helical peptidomimetics with this characteristic wide central pore that have been designed to mimic gramicidin A channels. Mimetics were designed using molecular modeling focused on oligomers of heterochiral dipeptides of proline analogs, in particular azaproline (AzPro). Molecular Dynamics simulations in water confirmed the stability of the designed helices. A sixteen-residue Formyl-(AzPro-Pro)8-NHCH2CH2OH helix was synthesized as well as a full thirty-two residue Cbz-(AzPro-Pro)16-OtBu channels. No liposomal lysis activity was observed suggesting lack of channel formation, possibly due to inappropriate hydrogen-bonding interactions in the membrane. These peptidomimetics also did not hemolyze red blood cells, unlike gramicidin A.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chris M W Ho
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janki Patel
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul Schlesinger
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen Rodgers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allan Doctor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garland R Marshall
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Wang T, Kong YF, Xu Y, Fan J, Xu HJ, Bierer D, Wang J, Shi J, Li YM. Efficient synthesis of hydrocarbon-bridged diaminodiacids through nickel-catalyzed reductive cross-coupling. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Xi Y, Song T, Tang S, Wang N, Du J. Preparation and Antibacterial Mechanism Insight of Polypeptide-Based Micelles with Excellent Antibacterial Activities. Biomacromolecules 2016; 17:3922-3930. [PMID: 27936717 DOI: 10.1021/acs.biomac.6b01285] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional antibiotics usually sterilize in chemical ways, which may lead to serious drug resistance. By contrast, peptide-based antibacterial materials are less susceptible to drug resistance. Herein we report the preparation of an antibacterial peptide-based copolymer micelle and the investigation of its membrane-penetration antibacterial mechanism by transmission electron microscopy (TEM). The copolymer is poly(l-lactide)-block-poly(phenylalanine-stat-lysine) [PLLA31-b-poly(Phe24-stat-Lys36)], which is synthesized by ring-opening polymerization. The PLLA chains form the core, whereas the polypeptide chains form the coronas of the micelle in aqueous solution. This micelle boasts excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Furthermore, TEM studies clearly reveal that the micelles pierce and then destroy the cell membrane of the bacteria. We also compared the advantages and disadvantages of two general methods for measuring the Minimal Inhibitory Concentration (MIC) values of antibacterial micelles. Overall, this study provides us with direct evidence for the antibacterial mechanism of polypeptide-based micelles and a strategy for synthesizing biodegradable antibacterial nanomaterials without antibiotic resistance.
Collapse
Affiliation(s)
- Yuejing Xi
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Middle Yanchang Road, Shanghai 200072, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Tao Song
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Songyao Tang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Nuosha Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Middle Yanchang Road, Shanghai 200072, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
13
|
Jadhav KB, Stein C, Makarewicz O, Pradel G, Lichtenecker RJ, Sack H, Heinemann SH, Arndt HD. Bioactivity of topologically confined gramicidin A dimers. Bioorg Med Chem 2016; 25:261-268. [PMID: 27865644 DOI: 10.1016/j.bmc.2016.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
The d-/l-peptide gramicidin A (gA) is well known as a pivotal ion channel model and shows a broad spectrum of bioactivities such as antibiosis, antimalarial activity, as well as hemolysis. We applied inter-chain disulfide bonds to constrain the conformational freedom of gA into parallel and antiparallel dimeric topologies. Albeit the constructs were not found to be monoconformational, CD- and IR-spectroscopic studies suggested that this strategy indeed restricted the conformational space of the d-/l-peptide construct, and that β-helical secondary structures prevail. Correlative testing of gA dimers in antimicrobial, antimalarial, and ion conduction assays suggested that the tail-to-tail antiparallel single stranded β6.3 helix dominantly mediates the bioactivity of gA. Other conformers are unlikely to contribute to these activities. From these investigations, only weakly ion conducting gA dimers were identified that retained nM antimalarial activity.
Collapse
Affiliation(s)
- Kirtikumar B Jadhav
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany
| | - Claudia Stein
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
| | - Oliwia Makarewicz
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany
| | - Gabriele Pradel
- RWTH Aachen University, Division of Cellular and Applied Infection Biology, Worringerweg 1, D-52074 Aachen, Germany
| | - Roman J Lichtenecker
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany
| | - Holger Sack
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany.
| |
Collapse
|
14
|
Kaji T, Murai M, Itoh H, Yasukawa J, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Functional Evaluation of Fourteen Derivatives of Lysocin E: Importance of Cationic, Hydrophobic, and Aromatic Moieties for Antibacterial Activity. Chemistry 2016; 22:16912-16919. [PMID: 27739191 DOI: 10.1002/chem.201604022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Lysocin E (1) is a structurally complex 37-membered depsipeptide comprising 12 amino-acid residues with an N-methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure-activity relationship (SAR) study by systematically changing the side-chain structures of l-Thr-1, d-Arg-2, N-Me-d-Phe-5, d-Arg-7, l-Glu-8, and d-Trp-10. First, we achieved total synthesis of the 14 new side-chain analogues of 1 by employing a solid-phase strategy. We then evaluated the MK-dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d-Arg-2/7 to a neutral amide, and the C7-acyl group of l-Thr-1 to the C2 or C11 counterpart decreased the antimicrobial activities four- or eight-fold. More drastically, chemical mutation of d-Trp-10 to d-Ala-10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side-chain functionalities.
Collapse
Affiliation(s)
- Takuya Kaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoki Murai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jyunichiro Yasukawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Hiroshi Hamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Antonenko YN, Gluhov GS, Firsov AM, Pogozheva ID, Kovalchuk SI, Pechnikova EV, Kotova EA, Sokolova OS. Gramicidin A disassembles large conductive clusters of its lysine-substituted derivatives in lipid membranes. Phys Chem Chem Phys 2016; 17:17461-70. [PMID: 26077982 DOI: 10.1039/c5cp02047f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-terminally substituted lysine derivatives of gramicidin A (gA), [Lys1]gA and [Lys3]gA, but not glutamate- or aspartate-substituted peptides have been previously shown to cause the leakage of carboxyfluorescein from liposomes. Here, the leakage induction was also observed for [Arg1]gA and [Arg3]gA, while [His1]gA and [His3]gA were inactive at neutral pH. The Lys3-containing analogue with all tryptophans replaced by isoleucines did not induce liposome leakage, similar to gA. This suggests that the presence of both tryptophans and N-terminal cationic residues is critical for pore formation. Remarkably, the addition of gA blocked the leakage induced by [Lys3]gA. By examining with fluorescence correlation spectroscopy the peptide-induced leakage of fluorescent markers from liposomes, we estimated the diameter of pores responsible for the leakage to be about 1.6 nm. Transmission electron cryo-microscopy imaging of liposomes with [Lys3]gA showed that the liposomal membranes contained high electron density particles with a size of about 40 Å, suggesting the formation of peptide clusters. No such clusterization was observed in liposomes incorporating gA or a mixture of gA with [Lys3]gA. Three-dimensional reconstruction of the clusters was compatible with their pentameric arrangement. Based on experimental data and computational modeling, we suggest that the large pore formed by [Lys3]gA represents a barrel-stave oligomeric cluster formed by antiparallel double-stranded helical dimers (DH). In a tentative model, the pentamer of dimers may be stabilized by aromatic Trp-Trp and cation-π Trp-Lys interactions between the neighboring DHs. The inhibiting effect of gA on the [Lys3]gA-induced leakage can be attributed to breaking of cation-π interactions, which prevents peptide clusterization and pore formation.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|