1
|
Uzal-Varela R, Rodríguez-Rodríguez A, Lalli D, Valencia L, Maneiro M, Botta M, Iglesias E, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Endeavor toward Redox-Responsive Transition Metal Contrast Agents Based on the Cross-Bridge Cyclam Platform. Inorg Chem 2024; 63:1575-1588. [PMID: 38198518 PMCID: PMC10806912 DOI: 10.1021/acs.inorgchem.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento
de Química Inorgánica, Facultade de Ciencias, Campus
Terra, Universidade de Santiago de Compostela, Lugo 27002, Galicia, Spain
| | - Mauro Botta
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Emilia Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - David Esteban-Gómez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Goran Angelovski
- Laboratory
of Molecular and Cellular Neuroimaging, International Center for Primate
Brain Research (ICPBR), Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Chinese
Academy of Sciences (CAS), Shanghai 201602, PR China
| | - Carlos Platas-Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| |
Collapse
|
2
|
Braun D, Judmann B, Cheng X, Wängler B, Schirrmacher R, Fricker G, Wängler C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin α vβ 3 Targeting. ACS OMEGA 2023; 8:2793-2807. [PMID: 36687076 PMCID: PMC9850772 DOI: 10.1021/acsomega.2c07484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Radiolabeled heterobivalent peptidic ligands (HBPLs) are a highly promising compound class for the sensitive and specific visualization of tumors as they often exhibit superior properties compared to their monospecific counterparts and are able to concomitantly or complementarily address different receptor types. The combination of two receptor-specific agents targeting the epidermal growth factor receptor (EGFR) and the integrin αvβ3 in one HBPL would constitute a synergistic combination of binding motifs as these two receptor types are concurrently overexpressed on several human tumor types and are closely associated with disease progression and metastasis. Here, we designed and synthesized two heterobivalent radioligands consisting of the EGFR-specific peptide GE11 and αvβ3-specific cyclic RGD peptides, bearing a (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid chelator for efficient radiolabeling and linkers of different lengths between both peptides. Both HBPLs were radiolabeled with 68Ga3+ in high radiochemical yields, purities of 96-99%, and molar activities of 36-88 GBq/μmol. [68Ga]Ga-1 and [68Ga]Ga-2 were evaluated for their log D(7.4) and stability toward degradation by human serum peptidases, showing a high hydrophilicity for both agents of -3.07 ± 0.01 and -3.44 ± 0.08 as well as a high stability toward peptidase degradation in human serum with half-lives of 272 and 237 min, respectively. Further on, the in vitro receptor binding profiles of both HBPLs to the target EGF and integrin αvβ3 receptors were assessed on EGFR-positive A431 and αvβ3-positive U87MG cells. Finally, we investigated the in vivo pharmacokinetics of HBPL [68Ga]Ga-1 by positron emission tomography/computed tomography imaging in A431 tumor-bearing xenograft mice to assess its potential for the receptor-specific visualization of EGFR- and/or αvβ3-expressing tumors. In these experiments, [68Ga]Ga-1 demonstrated a tumor uptake of 2.79 ± 1.66% ID/g, being higher than in all other organs and tissues apart from kidneys and blood at 2 h p.i. Receptor blocking studies revealed the observed tumor uptake to be solely mediated by integrin αvβ3, whereas no contribution of the GE11 peptide sequence to tumor uptake via the EGFR could be determined. Thus, the approach to develop radiolabeled EGFR- and integrin αvβ3-bispecific HBPLs is in general feasible although another peptide lead structure than GE11 should be used as the basis for the EGFR-specific part of the agents.
Collapse
Affiliation(s)
- Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Xia Cheng
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Damerow H, Wängler B, Schirrmacher R, Fricker G, Wängler C. Synthesis of a Bifunctional Cross-Bridged Chelating Agent, Peptide Conjugation, and Comparison of 68 Ga Labeling and Complex Stability Characteristics with Established Chelators. ChemMedChem 2023; 18:e202200495. [PMID: 36259364 PMCID: PMC10100262 DOI: 10.1002/cmdc.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Indexed: 01/24/2023]
Abstract
[68 Ga]Ga3+ can be introduced into receptor-specific peptidic carriers via different chelators to obtain radiotracers for Positron Emission Tomography imaging and the chosen chelating agent considerably influences the in vivo pharmacokinetics of the corresponding radiopeptides. A chelator that should be a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides would be a backbone-functionalized variant of the chelator CB-DO2A. Here, the bifunctional cross-bridged chelating agent CB-DO2A-GA was developed and compared to the established chelators DOTA, NODA-GA and DOTA-GA. For this purpose, CB-DO2A-GA(tBu)2 was introduced into the peptide Tyr3 -octreotate (TATE) and in direct comparison to the corresponding DOTA-, NODA-GA-, and DOTA-GA-modified TATE analogs, CB-DO2A-GA-TATE required harsher reaction conditions for 68 Ga-incorporation. Regarding the hydrophilicity profile of the resulting radiopeptides, a decrease in hydrophilicity from [68 Ga]Ga-DOTA-GA-TATE (logD(7.4) of -4.11±0.11) to [68 Ga]Ga-CB-DO2A-GA-TATE (-3.02±0.08) was observed. Assessing the stability against metabolic degradation and complex challenge, [68 Ga]Ga-CB-DO2A-GA demonstrated a very high kinetic inertness, exceeding that of [68 Ga]Ga-DOTA-GA. Therefore, CB-DO2A-GA is a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides, especially when the formation of a very stable, positively charged 68 Ga-complex is pursued.
Collapse
Affiliation(s)
- Helen Damerow
- Clinic of Radiology and Nuclear Medicine, Biomedical ChemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| | - Björn Wängler
- Clinic of Radiology and Nuclear Medicine, Molecular Imaging and RadiochemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological ImagingUniversity of AlbertaEdmontonABT6G 1Z2Canada
| | - Gert Fricker
- Institute of Pharmacy and Molecular BiotechnologyUniversity of Heidelberg69120HeidelbergGermany
| | - Carmen Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical ChemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| |
Collapse
|
4
|
Uzal-Varela R, Patinec V, Tripier R, Valencia L, Maneiro M, Canle M, Platas-Iglesias C, Esteban-Gómez D, Iglesias E. On the dissociation pathways of copper complexes relevant as PET imaging agents. J Inorg Biochem 2022; 236:111951. [PMID: 35963110 DOI: 10.1016/j.jinorgbio.2022.111951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Several bifunctional chelators have been synthesized in the last years for the development of new 64Cu-based PET agents for in vivo imaging. When designing a metal-based PET probe, it is important to achieve high stability and kinetic inertness once the radioisotope is coordinated. Different competitive assays are commonly used to evaluate the possible dissociation mechanisms that may induce Cu(II) release in the body. Among them, acid-assisted dissociation tests or transchelation challenges employing EDTA or SOD are frequently used to evaluate both solution thermodynamics and the kinetic behavior of potential metal-based systems. Despite of this, the Cu(II)/Cu(I) bioreduction pathway that could be promoted by the presence of bioreductants still remains little explored. To fill this gap we present here a detailed spectroscopic study of the kinetic behavior of different macrocyclic Cu(II) complexes. The complexes investigated include the cross-bridge cyclam derivative [Cu(CB-TE1A)]+, whose structure was determined using single-crystal X-ray diffraction. The acid-assisted dissociation mechanism was investigated using HClO4 and HCl to analyse the effect of the counterion on the rate constants. The complexes were selected so that the effects of complex charge and coordination polyhedron could be assessed. Cyclic voltammetry experiments were conducted to investigate whether the reduction to Cu(I) falls within the window of common bioreducing agents. The most striking behavior concerns the [Cu(NO2Th)]2+ complex, a 1,4,7-triazacyclononane derivative containing two methylthiazolyl pendant arms. This complex is extremely inert with respect to dissociation following the acid-catalyzed mechanism, but dissociates rather quickly in the presence of a bioreductant like ascorbic acid.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Laura Valencia
- Departamento de Química Inorgánica, Universidade de Vigo, Facultad de Ciencias, 36310 Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, 27002 Lugo, Spain
| | - Moisés Canle
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| | - Emilia Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| |
Collapse
|
5
|
Judmann B, Braun D, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors. ACS OMEGA 2022; 7:27690-27702. [PMID: 35967067 PMCID: PMC9366781 DOI: 10.1021/acsomega.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/μmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.
Collapse
Affiliation(s)
- Benedikt Judmann
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Diana Braun
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, T6G 1Z2 Edmonton, AB, Canada
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine,
Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Gert Fricker
- Institute
of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical
Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty
Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Chelation of Theranostic Copper Radioisotopes with S-Rich Macrocycles: From Radiolabelling of Copper-64 to In Vivo Investigation. Molecules 2022; 27:molecules27134158. [PMID: 35807404 PMCID: PMC9268100 DOI: 10.3390/molecules27134158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu2+-Cu+ redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu2+ and Cu+. In this work, the labelling performances of a series of S-rich polyazamacrocyclic chelators with [64Cu]Cu2+ and the stability of the [64Cu]Cu-complexes thereof were evaluated. Among the chelators considered, the best results were obtained with 1,7-bis [2-(methylsulfanyl)ethyl]-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). DO2A2S was labelled at high molar activities in mild reaction conditions, and its [64Cu]Cu2+ complex showed excellent integrity in human serum over 24 h. Biodistribution studies in BALB/c nude mice performed with [64Cu][Cu(DO2A2S)] revealed a behavior similar to other [64Cu]Cu-labelled cyclen derivatives characterized by high liver and kidney uptake, which could either be ascribed to transchelation phenomena or metabolic processing of the intact complex.
Collapse
|
7
|
Damerow H, Hübner R, Judmann B, Schirrmacher R, Wängler B, Fricker G, Wängler C. Side-by-Side Comparison of Five Chelators for 89Zr-Labeling of Biomolecules: Investigation of Chemical/Radiochemical Properties and Complex Stability. Cancers (Basel) 2021; 13:cancers13246349. [PMID: 34944969 PMCID: PMC8699488 DOI: 10.3390/cancers13246349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, five different chelating agents, namely DFO, CTH-36, DFO*, 3,4,3-(LI-1,2-HOPO) and DOTA-GA, were compared with regard to the relative kinetic inertness of their corresponding 89Zr complexes to evaluate their potential for in vivo application and stable 89Zr complexation. The chelators were identically functionalized with tetrazines, enabling a fully comparable, efficient, chemoselective and biorthogonal conjugation chemistry for the modification of any complementarily derivatized biomolecules of interest. A small model peptide of clinical relevance (TCO-c(RGDfK)) was derivatized via iEDDA click reaction with the developed chelating agents (TCO = trans-cyclooctene and iEDDA = inverse electron demand Diels-Alder). The bioconjugates were labeled with 89Zr4+, and their radiochemical properties (labeling conditions and efficiency), logD(7.4), as well as the relative kinetic inertness of the formed complexes, were compared. Furthermore, density functional theory (DFT) calculations were conducted to identify potential influences of chelator modification on complex formation and geometry. The results of the DFT studies showed-apart from the DOTA-GA derivative-no significant influence of chelator backbone functionalization or the conjugation of the chelator tetrazines by iEDDA. All tetrazines could be efficiently introduced into c(RGDfK), demonstrating the high suitability of the agents for efficient and chemoselective bioconjugation. The DFO-, CTH-36- and DFO*-modified c(RGDfK) peptides showed a high radiolabeling efficiency under mild reaction conditions and complete 89Zr incorporation within 1 h, yielding the 89Zr-labeled analogs as homogenous products. In contrast, 3,4,3-(LI-1,2-HOPO)-c(RGDfK) required considerably prolonged reaction times of 5 h for complete radiometal incorporation and yielded several different 89Zr-labeled species. The labeling of the DOTA-GA-modified peptide was not successful at all. Compared to [89Zr]Zr-DFO-, [89Zr]Zr-CTH-36- and [89Zr]Zr-DFO*-c(RGDfK), the corresponding [89Zr]Zr-3,4,3-(LI-1,2-HOPO) peptide showed a strongly increased lipophilicity. Finally, the relative stability of the 89Zr complexes against the EDTA challenge was investigated. The [89Zr]Zr-DFO complex showed-as expected-a low kinetic inertness. Unexpectedly, also, the [89Zr]Zr-CTH-36 complex demonstrated a high susceptibility against the challenge, limiting the usefulness of CTH-36 for stable 89Zr complexation. Only the [89Zr]Zr-DFO* and the [89Zr]Zr-3,4,3-(LI-1,2-HOPO) complexes demonstrated a high inertness, qualifying them for further comparative in vivo investigation to determine the most appropriate alternative to DFO for clinical application.
Collapse
Affiliation(s)
- Helen Damerow
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.D.); (R.H.); (B.J.)
| | - Ralph Hübner
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.D.); (R.H.); (B.J.)
| | - Benedikt Judmann
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.D.); (R.H.); (B.J.)
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany;
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.D.); (R.H.); (B.J.)
- Correspondence: ; Tel.: +49-621-383-3761
| |
Collapse
|
8
|
Tosato M, Dalla Tiezza M, May NV, Isse AA, Nardella S, Orian L, Verona M, Vaccarin C, Alker A, Mäcke H, Pastore P, Di Marco V. Copper Coordination Chemistry of Sulfur Pendant Cyclen Derivatives: An Attempt to Hinder the Reductive-Induced Demetalation in 64/67Cu Radiopharmaceuticals. Inorg Chem 2021; 60:11530-11547. [PMID: 34279088 PMCID: PMC8389837 DOI: 10.1021/acs.inorgchem.1c01550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+ complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag+-Cu2+ competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu2+ complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions. The structures of the Cu2+ complexes in aqueous solution were investigated by UV-vis and electron paramagnetic resonance (EPR), and the results were supported by relativistic density functional theory (DFT) calculations. Isomers were detected that differed from their coordination modes. Crystals of [Cu(DO4S)(NO3)]·NO3 and [Cu(DO2A2S)] suitable for X-ray diffraction were obtained. Cyclic voltammetry (CV) experiments highlighted the remarkable stability of the copper complexes with reference to dissociation upon reduction from Cu2+ to Cu+ on the CV time scale. The Cu+ complexes were generated in situ by electrolysis and examined by NMR spectroscopy. DFT calculations gave further structural insights. These results demonstrate that the investigated sulfur-containing chelators are promising candidates for application in copper-based radiopharmaceuticals. In this connection, the high stability of both Cu2+ and Cu+ complexes can represent a key parameter for avoiding in vivo demetalation after bioinduced reduction to Cu+, often observed for other well-known chelators that can stabilize only Cu2+.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok Körútja 2, 1117 Budapest, Hungary
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Sonia Nardella
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Verona
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - André Alker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche, Grenzacherstrasse 124, 4058 Basel, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
9
|
Hübner R, Paretzki A, von Kiedrowski V, Maspero M, Cheng X, Davarci G, Braun D, Damerow H, Judmann B, Filippou V, Dallanoce C, Schirrmacher R, Wängler B, Wängler C. PESIN Conjugates for Multimodal Imaging: Can Multimerization Compensate Charge Influences on Cell Binding Properties? A Case Study. Pharmaceuticals (Basel) 2021; 14:ph14060531. [PMID: 34199635 PMCID: PMC8226452 DOI: 10.3390/ph14060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
- Correspondence: (R.H.); (C.W.)
| | - Alexa Paretzki
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Marco Maspero
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Xia Cheng
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Güllü Davarci
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Diana Braun
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Helen Damerow
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
| | - Benedikt Judmann
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Vasileios Filippou
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Correspondence: (R.H.); (C.W.)
| |
Collapse
|
10
|
Hübner R, von Kiedrowski V, Benkert V, Wängler B, Schirrmacher R, Krämer R, Wängler C. Hybrid Multimodal Imaging Synthons for Chemoselective and Efficient Biomolecule Modification with Chelator and Near-Infrared Fluorescent Cyanine Dye. Pharmaceuticals (Basel) 2020; 13:ph13090250. [PMID: 32948032 PMCID: PMC7558102 DOI: 10.3390/ph13090250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023] Open
Abstract
The development of hybrid multimodal imaging synthons (MIS), carrying in addition to a chelator for radiometal labeling also a near-infrared (NIR) fluorescent cyanine dye was the aim of this work. The MIS should be introducible into biomolecules of choice via an efficient and chemoselective click chemistry reaction. After chemical optimization, a successful synthetic strategy towards such hybrid MIS was developed, based on solid phase-based synthesis techniques and applying different near-infrared fluorescent cyanine dyes. The developed hybrid agents were shown to be easily introducible into a model homobivalent peptidic gastrin-releasing peptide receptor- (GRPR)-specific carrier without forming any side products and the MIS as well as their bioconjugates were radiolabeled with the positron-emitter 68Ga3+. The hybrid multimodal agents were characterized with regard to their logDs, GRPR target affinities and photophysical characteristics. It could be shown that the properties of the bioconjugates were not per se affected by the introduction of the MIS but that the cyanine dye used and specifically the number of comprised negative charges per dye molecule can have a considerable influence on target receptor binding. Thus, the molecular toolbox described here enables the synthesis of tailored hybrid multimodal imaging synthons for biomolecule modification, meeting the specific need and envisioned application of the combined imaging agent.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Correspondence: (R.H.); (C.W.)
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (B.W.)
| | - Vanessa Benkert
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 274, 69120 Heidelberg, Germany; (V.B.); (R.K.)
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (B.W.)
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Roland Krämer
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 274, 69120 Heidelberg, Germany; (V.B.); (R.K.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Correspondence: (R.H.); (C.W.)
| |
Collapse
|
11
|
Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel) 2020; 13:ph13080173. [PMID: 32751666 PMCID: PMC7465997 DOI: 10.3390/ph13080173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past few years, an approach emerged that combines different receptor-specific peptide radioligands able to bind different target structures on tumor cells concomitantly or separately. The reason for the growing interest in this special field of radiopharmaceutical development is rooted in the fact that bispecific peptide heterodimers can exhibit a strongly increased target cell avidity and specificity compared to their corresponding monospecific counterparts by being able to bind to two different target structures that are overexpressed on the cell surface of several malignancies. This increase of avidity is most pronounced in the case of concomitant binding of both peptides to their respective targets but is also observed in cases of heterogeneously expressed receptors within a tumor entity. Furthermore, the application of a radiolabeled heterobivalent agent can solve the ubiquitous problem of limited tumor visualization sensitivity caused by differential receptor expression on different tumor lesions. In this article, the concept of heterobivalent targeting and the general advantages of using radiolabeled bispecific peptidic ligands for tumor imaging or therapy as well as the influence of molecular design and the receptors on the tumor cell surface are explained, and an overview is given of the radiolabeled heterobivalent peptides described thus far.
Collapse
|
12
|
Pretze M, van der Meulen N, Wängler C, Schibli R, Wängler B. Targeted 64
Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. J Labelled Comp Radiopharm 2019; 62:471-482. [DOI: 10.1002/jlcr.3736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Nick P. van der Meulen
- Laboratory of Radiochemistry (LRC), Center of Radiopharmaceutical Sciences; PSI; Villigen Switzerland
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Roger Schibli
- Laboratory of Radiochemistry (LRC), Center of Radiopharmaceutical Sciences; PSI; Villigen Switzerland
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
13
|
Litau S, Seibold U, Wängler B, Schirrmacher R, Wängler C. iEDDA Conjugation Reaction in Radiometal Labeling of Peptides with 68Ga and 64Cu: Unexpected Findings. ACS OMEGA 2018; 3:14039-14053. [PMID: 30411057 PMCID: PMC6217686 DOI: 10.1021/acsomega.8b01926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/15/2018] [Indexed: 05/31/2023]
Abstract
The inverse electron demand Diels-Alder conjugation reaction has gained increasing importance over the past few years for efficient in vivo and ex vivo radiometal labeling of antibodies. However, the application of this very fast reaction type has not been studied for radiolabeling of peptides so far. We show here the synthesis of 3-benzyl-1,2,4,5-tetrazine-comprising ((1,4,7,10-tetraazacyclododecane-4,7,10-triyl)triacetic acid-1-glutaric acid) (DOTA-GA) and ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) chelators and their radiometal labeling with 68Ga3+ and 64Cu2+. The secondary labeling precursors 68Ga-DOTA-GA-Tz, 68Ga-NODA-GA-Tz, and 64Cu-DOTA-GA-Tz were obtained in high radiochemical yields (RCYs) and purities as well as molar activities for further labeling of trans-cyclooctene (TCO)-modified peptides. However, the following reactions of the radiometal-labeled tetrazines with different TCO-comprising model peptide analogs unexpectedly resulted in the formation of a considerable amount of side products (20-55%) which limits the overall achievable RCYs and purities as well as molar activities of the target radiopeptides. Under otherwise identical, nonradioactive reaction conditions, this effect could however not be observed. In contrast, the corresponding one-step radiolabeling protocols provided the target 68Ga-labeled radiopeptides in exceptionally high RCYs and purities of ≥99% and molar activities of 68-72 GBq/μmol starting from activities of 340-358 MBq of 68Ga. Thus, the usefulness of the two-step labeling of TCO-modified peptides with radiometal-labeled chelator-tetrazines seems to be limited.
Collapse
Affiliation(s)
- Shanna Litau
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Uwe Seibold
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Björn Wängler
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada
| | - Carmen Wängler
- Department
of Clinical Radiology and Nuclear Medicine, Biomedical
Chemistry and Department of Clinical Radiology and Nuclear Medicine, Molecular
Imaging and Radiochemistry, Medical Faculty
Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| |
Collapse
|
14
|
Deng H, Wang H, Zhang H, Wang M, Giglio B, Ma X, Jiang G, Yuan H, Wu Z, Li Z. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs. Mol Imaging 2018; 16:1536012117711369. [PMID: 28849698 PMCID: PMC6081756 DOI: 10.1177/1536012117711369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. MATERIALS AND METHODS Three 64Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR+ HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. RESULTS All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64Cu-NOTA-NT and 64Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. CONCLUSIONS Our results demonstrated that 64Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.
Collapse
Affiliation(s)
- Huaifu Deng
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Zhang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,3 Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengzhe Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Giglio
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaofen Ma
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Guihua Jiang
- 4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Hong Yuan
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhanhong Wu
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Sarkar S, Bhatt N, Ha YS, Huynh PT, Soni N, Lee W, Lee YJ, Kim JY, Pandya DN, An GI, Lee KC, Chang Y, Yoo J. High in Vivo Stability of 64Cu-Labeled Cross-Bridged Chelators Is a Crucial Factor in Improved Tumor Imaging of RGD Peptide Conjugates. J Med Chem 2018; 61:385-395. [DOI: 10.1021/acs.jmedchem.7b01671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Swarbhanu Sarkar
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Nikunj Bhatt
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Yeong Su Ha
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Phuong Tu Huynh
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Nisarg Soni
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Woonghee Lee
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Yong Jin Lee
- Department
of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Jung Young Kim
- Department
of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Darpan N. Pandya
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Gwang Il An
- Department
of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Kyo Chul Lee
- Department
of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Yongmin Chang
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| | - Jeongsoo Yoo
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
16
|
Hinsenkamp I, Schulz S, Roscher M, Suhr AM, Meyer B, Munteanu B, Fuchser J, Schoenberg SO, Ebert MPA, Wängler B, Hopf C, Burgermeister E. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia 2017; 18:500-11. [PMID: 27566106 PMCID: PMC5018096 DOI: 10.1016/j.neo.2016.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 11/27/2022]
Abstract
Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy.
Collapse
Affiliation(s)
- Isabel Hinsenkamp
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Sandra Schulz
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mareike Roscher
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Anne-Maria Suhr
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Meyer
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Bogdan Munteanu
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | | | - Stefan O Schoenberg
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Matthias P A Ebert
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Wängler
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Carsten Hopf
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elke Burgermeister
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|