1
|
Knippenberg N, Lowdon JW, Frigoli M, Cleij TJ, Eersels K, van Grinsven B, Diliën H. Development towards a novel screening method for nipecotic acid bioisosteres using molecular imprinted polymers (MIPs) as alternative to in vitro cellular uptake assays. Talanta 2024; 278:126500. [PMID: 38991407 DOI: 10.1016/j.talanta.2024.126500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Impaired expression of GABA transporters (GATs) is closely related to the pathogenesis of among others Parkinson's disease and epilepsy. As such, lipophilic nipecotic acid analogs have been extensively studied as GAT1-addressing drugs and radioligands but suffer from limited brain uptake due to the zwitterionic properties of the nipecotic acid moiety. Bioisosteric replacement of the carboxylic acid group is a promising strategy to improve the brain uptake, though it requires knowledge on the binding of these isosteres to GAT1. To screen nipecotic acid isosteres for their affinity to GAT1 in a time- and cost-effective manner, this research aims to develop a molecular imprinted polymer (MIP) that mimics the natural binding site of GAT1 and can act as an alternative screening tool to the current radiometric and mass spectrometry cellular-based assays. To this end, a nipecotic acid MIP was created using the electropolymerization of ortho-phenylenediamine (oPD) by cyclic voltammetry (CV). The optimization of the generated receptor layer was achieved by varying the scan rate (50-250 mV/s) and number of CV cycles (5-12), yielding an optimized MIP with an average imprinting factor of 2.6, a linear range of 1-1000 nm, and a theoretical LOD of 0.05 nm, as analyzed by electrical impedance spectroscopy (EIS). Selectivity studies facilitated the investigation of major binding interactions between the MIP and the substrate, building an experimental model that compares characteristics of various analogs. Results from this model indicate that the substrate carboxylic acid group plays a more important role in binding than an amine group, after comparing the binding of cyclohexanecarboxylic acid (average IF of 1.7) and piperidine (average IF of 0.46). The research culminates in a discussion regarding the feasibility of the in vitro model, comparing the synthetic system against the biological performance of GAT1. Thus, evaluating if it is possible to generate a synthetic GAT1 mimic, and if so, provide directions for follow-up research.
Collapse
Affiliation(s)
- Niels Knippenberg
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
2
|
Knippenberg N, Bauwens M, Schijns O, Hoogland G, Florea A, Rijkers K, Cleij TJ, Eersels K, van Grinsven B, Diliën H. Visualizing GABA transporters in vivo: an overview of reported radioligands and future directions. EJNMMI Res 2023; 13:42. [PMID: 37171631 PMCID: PMC10182260 DOI: 10.1186/s13550-023-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmission. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychiatric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant transporter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radioligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioligands in the future.
Collapse
Affiliation(s)
- Niels Knippenberg
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Olaf Schijns
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
3
|
Rogério da Silva Moraes E, Santos-Silva M, Grisólia AA, Braga DV, Reis Leão LK, Bahia CP, Soares de Moraes SA, Passos AF, de Jesus Oliveira Batista E, Herculano AM, Matos Oliveira KRH. High performance liquid chromatography-based method to analyze activity of GABA transporters in central nervous system. Neurochem Int 2022; 158:105359. [DOI: 10.1016/j.neuint.2022.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
|
4
|
Gryzło B, Zaręba P, Malawska K, Mazur G, Rapacz A, Ła̧tka K, Höfner GC, Latacz G, Bajda M, Sałat K, Wanner KT, Malawska B, Kulig K. Novel Functionalized Amino Acids as Inhibitors of GABA Transporters with Analgesic Activity. ACS Chem Neurosci 2021; 12:3073-3100. [PMID: 34347423 PMCID: PMC8397297 DOI: 10.1021/acschemneuro.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Neuropathic pain
resistance to pharmacotherapy has encouraged researchers
to develop effective therapies for its treatment. γ-Aminobutyric
acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly
recognized as promising drug targets for neuropathic pain (NP) associated
with imbalances in inhibitory neurotransmission. In this context,
we designed and synthesized new functionalized amino acids as inhibitors
of GABA uptake and assessed their activities toward all four mouse
GAT subtypes (mGAT1–4). According to the obtained results,
compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity
that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular
interest and were therefore evaluated for their cytotoxic and hepatotoxic
effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties
in three rodent models of NP, namely, chemotherapy-induced neuropathic
pain models (the oxaliplatin model and the paclitaxel model) and the
diabetic neuropathic pain model induced by streptozotocin; however
compound 56a demonstrated predominant activity. Since
impaired motor coordination is also observed in neuropathic pain conditions,
we have pointed out that none of the test compounds induced motor
deficits in the rotarod test.
Collapse
Affiliation(s)
- Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kamil Ła̧tka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Georg C. Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
5
|
Zaręba P, Sałat K, Höfner GC, Łątka K, Bajda M, Latacz G, Kotniewicz K, Rapacz A, Podkowa A, Maj M, Jóźwiak K, Filipek B, Wanner KT, Malawska B, Kulig K. Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity. Eur J Med Chem 2021; 221:113512. [PMID: 34015586 DOI: 10.1016/j.ejmech.2021.113512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Krzysztof Kotniewicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Barbara Filipek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| |
Collapse
|
6
|
Pasieka A, Panek D, Jończyk J, Godyń J, Szałaj N, Latacz G, Tabor J, Mezeiova E, Chantegreil F, Dias J, Knez D, Lu J, Pi R, Korabecny J, Brazzolotto X, Gobec S, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and γ-aminobutyric acid transporters. Eur J Med Chem 2021; 218:113397. [PMID: 33838585 DOI: 10.1016/j.ejmech.2021.113397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 μM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 μM; inhibition of Aβ aggregation = 57.9% at 10 μM; mGAT1 IC50 = 10.96 μM; and mGAT2 IC50 = 19.05 μM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 μM and IC50 = 2.95 μM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Julia Tabor
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
7
|
Hauke TJ, Höfner G, Wanner KT. Generation and screening of pseudostatic hydrazone libraries derived from 5-substituted nipecotic acid derivatives at the GABA transporter mGAT4. Bioorg Med Chem 2019; 27:144-152. [DOI: 10.1016/j.bmc.2018.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
8
|
Tóth K, Höfner G, Wanner KT. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a trans-alkene spacer as potent GABA uptake inhibitors. Bioorg Med Chem 2018; 26:5944-5961. [DOI: 10.1016/j.bmc.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
|
9
|
Hauke TJ, Wein T, Höfner G, Wanner KT. Novel Allosteric Ligands of γ-Aminobutyric Acid Transporter 1 (GAT1) by MS Based Screening of Pseudostatic Hydrazone Libraries. J Med Chem 2018; 61:10310-10332. [DOI: 10.1021/acs.jmedchem.8b01602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tobias J. Hauke
- Department of Pharmacy—Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy—Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Georg Höfner
- Department of Pharmacy—Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy—Center of Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
10
|
Damgaard M, Haugaard AS, Kickinger S, Al-Khawaja A, Lie MEK, Ecker GF, Clausen RP, Frølund B. Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements. ADVANCES IN NEUROBIOLOGY 2017; 16:315-332. [DOI: 10.1007/978-3-319-55769-4_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Petrera M, Wein T, Allmendinger L, Sindelar M, Pabel J, Höfner G, Wanner KT. Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki-Miyaura Cross-Coupling Reactions. ChemMedChem 2015; 11:519-38. [DOI: 10.1002/cmdc.201500490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thomas Wein
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Miriam Sindelar
- Department Pharmacology; Weill Cornell Medical College; LC-428 1300 York Avenue New York NY 10021 USA
| | - Jörg Pabel
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Georg Höfner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|