1
|
Merlino F, Secondo A, Mitidieri E, Sorrentino R, Bellavita R, Grasso N, Chatenet D, Pannaccione A, Grieco P, d'Emmanuele di Villa Bianca R, Carotenuto A. Expanding Structure-Activity Relationships of Human Urotensin II Peptide Analogues: A Proposed Key Role of the N-Terminal Region for Novel Urotensin II Receptor Modulators. J Med Chem 2024; 67:13879-13890. [PMID: 39096311 DOI: 10.1021/acs.jmedchem.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
While the urotensinergic system plays a role in influencing various pathologies, its potential remains untapped because of the absence of therapeutically effective urotensin II receptor (UTR) modulators. Herein, we developed analogues of human urotensin II (hU-II) peptide in which, along with well-known antagonist-oriented modifications, the Glu1 residue was subjected to single-point mutations. The generated library was tested by a calcium mobilization assay and ex vivo experiments, also in competition with selected ligands. Interestingly, many derivatives showed noncompetitive modulation that was rationalized by the lateral allostery concept applied to a G protein-coupled receptor (GPCR) multimeric model. UPG-108 showed an unprecedented ability to double the efficacy of hU-II, while UPG-109 and UPG-111 turned out to be negative allosteric modulators of UTR. Overall, our investigation will serve to explore and highlight the expanding possibilities of modulating the UTR system through N-terminally modified hU-II analogues and, furthermore, will aim to elucidate the intricate nature of such a GPCR system.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Nicola Grasso
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, H7 V 1B7 Québec, Canada
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | | | - Alfonso Carotenuto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
2
|
Zappavigna S, Abate M, Cossu AM, Lusa S, Campani V, Scotti L, Luce A, Yousif AM, Merlino F, Grieco P, De Rosa G, Caraglia M. Urotensin-II-Targeted Liposomes as a New Drug Delivery System towards Prostate and Colon Cancer Cells. JOURNAL OF ONCOLOGY 2019; 2019:9293560. [PMID: 31929800 PMCID: PMC6942863 DOI: 10.1155/2019/9293560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
Abstract
Urotensin-II (UT-II) and its receptor (UTR) are involved in the occurrence of different epithelial cancers. In particular, UTR was found overexpressed on colon, bladder, and prostate cancer cells. The conjugation of ligands, able to specifically bind receptors that are overexpressed on cancer cells, to liposome surface represents an efficient active targeting strategy to enhance selectivity and efficiency of drug delivery systems. The aim of this study was to develop liposomes conjugated with UT-II (LipoUT) for efficient targeting of cancer cells that overexpress UTR. The liposomes had a mean diameter between 150 nm and 160 nm with a narrow size distribution (PI ≤ 0.1) and a doxo encapsulation efficiency of 96%. Moreover, the conjugation of UT-II to liposomes weakly reduced the zeta potential. We evaluated UTR expression on prostate (DU145, PC3, and LNCaP) and colon (WIDR and LoVo) cancer cells by FACS and western blotting analysis. UTR protein was expressed in all the tested cell lines; the level of expression was higher in WIDR, PC3, and LNCaP cells compared with LoVo and DU145. MTT cell viability assay showed that LipoUT-doxo was more active than Lipo-doxo on the growth inhibition of cells that overexpressed UTR (PC3, LNCaP, and WIDR) while in LoVo and DU145 cell lines, the activity was similar to or lower than that one of Lipo-doxo, respectively. Moreover, we found that cell uptake of Bodipy-labeled liposomes in PC3 and DU145 was higher for LipoUT than the not-armed counterparts but at higher extent in UTR overexpressing PC3 cells (about 2-fold higher), as evaluated by both confocal and FACS. In conclusion, the encapsulation of doxo in UT-II-targeted liposomes potentiated its delivery in UTR-overexpressing cells and could represent a new tool for the targeting of prostate and colon cancer.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. de Crecchio, 7, 80138 Naples, Italy
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. de Crecchio, 7, 80138 Naples, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. de Crecchio, 7, 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Sara Lusa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Lorena Scotti
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. de Crecchio, 7, 80138 Naples, Italy
| | - Ali Munaim Yousif
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. de Crecchio, 7, 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| |
Collapse
|
3
|
Merlino F, Billard É, Yousif AM, Di Maro S, Brancaccio D, Abate L, Carotenuto A, Bellavita R, d'Emmanuele di Villa Bianca R, Santicioli P, Marinelli L, Novellino E, Hébert TE, Lubell WD, Chatenet D, Grieco P. Functional Selectivity Revealed by N-Methylation Scanning of Human Urotensin II and Related Peptides. J Med Chem 2019; 62:1455-1467. [PMID: 30615452 DOI: 10.1021/acs.jmedchem.8b01601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In accordance with their common but also divergent physiological actions, human urotensin II (1) and urotensin II-related peptide (2) could stabilize specific urotensin II receptor (UTR) conformations, thereby activating different signaling pathways, a feature referred to as biased agonism or functional selectivity. Sequential N-methylation of the amides in the conserved core sequence of 1, 2, and fragment U-II4-11 (3) shed light on structural requirements involved in their functional selectivity. Thus, 18 N-methylated UTR ligands were synthesized and their biological profiles evaluated using in vitro competition binding assays, ex vivo rat aortic ring bioassays and BRET-based biosensor experiments. Biological activity diverged from that of the parent structures contingent on the location of amide methylation, indicating relevant hydrogen-bond interactions for the function of the endogenous peptides. Conformational analysis of selected N-methyl analogs indicated the importance of specific amide residues of 2 for the distinct pharmacology relative to 1 and 3.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Ali M Yousif
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Salvatore Di Maro
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Diego Brancaccio
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Luigi Abate
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Alfonso Carotenuto
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Rosa Bellavita
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | | | - Paolo Santicioli
- Department of Pharmacology , Menarini Ricerche , via Rismondo 12/A , Florence 50131 , Italy
| | - Luciana Marinelli
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Ettore Novellino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - William D Lubell
- Département de Chimie , Université de Montréal , C.P. 6128, Station Centre-ville , Montréal , Québec H3C 3J7 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Paolo Grieco
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| |
Collapse
|
4
|
Yousif AM, Ingangi V, Merlino F, Brancaccio D, Minopoli M, Bellavita R, Novellino E, Carriero MV, Carotenuto A, Grieco P. Urokinase receptor derived peptides as potent inhibitors of the formyl peptide receptor type 1-triggered cell migration. Eur J Med Chem 2017; 143:348-360. [PMID: 29202399 DOI: 10.1016/j.ejmech.2017.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration. We and others have previously documented that the uPAR(84-95) sequence, interacts with the formyl peptide receptors (FPR)s, henceforth inducing cell migration of several cell lines, including leukocytes, and the synthetic shorter peptide (Ser88-Arg-Ser-Arg-Tyr92, SRSRY) retains chemotactic activity in vitro and in vivo. Recently, we have developed the head-to-tail cyclic analog [SRSRY], a new potent and stable inhibitor of monocyte trafficking. This prompted us to develop novel cyclic and linear analogs of [SRSRY] with the aim to broaden the knowledge about structure-activity relationships of peptide [SRSRY]. Herein we report their synthesis, effects on cell migration, conformational and docking analyses which served to envisage a new pharmacophore model for inhibitors of FPR1-triggered cell migration.
Collapse
Affiliation(s)
- Ali Munaim Yousif
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy; Department of Chemistry, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, United States
| | - Vincenzo Ingangi
- Department of Experimental Oncology IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale" I-80131 Naples, Italy; Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Michele Minopoli
- Department of Experimental Oncology IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale" I-80131 Naples, Italy; Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Maria Vincenza Carriero
- Department of Experimental Oncology IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale" I-80131 Naples, Italy.
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy.
| | - Paolo Grieco
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy; Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB) University of Naples "Federico II" and DFM-Scarl, Institute of Biostructures and Bioimaging - CNR Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|