1
|
Joseph S, Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Synthesis, characterization, and application of honey stabilized inulin nanoparticles as colon targeting drug delivery carrier. Int J Biol Macromol 2024; 263:130274. [PMID: 38373569 DOI: 10.1016/j.ijbiomac.2024.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Inulin (INU) is a versatile natural polysaccharide primarily derived from chicory roots. INU possesses the unique quality of evading digestion or fermentation in the early stages of the human digestive tract, instead reaching the lower colon directly. Exploiting on this distinctive attribute, INU finds application in the creation of targeted carrier systems for delivering drugs tailored to colon-related diseases. This study presents a novel method for synthesizing highly stable and non-aggregatory inulin nanoparticles (INU NPs) by ionotropic gelation method, using calcium chloride as crosslinker and natural honey as a stabilizing agent. Different formulation and process parameters were optimized for the synthesis of monodispersed INU NPs. These INU NPs efficiently encapsulated a hydrophilic drug irinotecan hydrochloride trihydrate (IHT) and drug loaded formulation (IINPs) demonstrated excellent colloidal and storage stabilities. Notably, these IINPs exhibited pH-dependent drug release, suggesting potential for colon-specific drug delivery. Anticancer activity of the NPs was found significantly higher in comparison to IHT through cytotoxicity and apoptosis studies against human colorectal carcinoma cells. Overall, this study revealed that the INU NPs synthesized by ionotropic gelation will be an efficient nanocarrier system for colon-targeted drug delivery due to their exceptional biocompatibility and stability in stomach and upper intestinal conditions.
Collapse
Affiliation(s)
- Subin Joseph
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
2
|
Ghali ENHK, Pranav, Chauhan SC, Yallapu MM. Inulin-based formulations as an emerging therapeutic strategy for cancer: A comprehensive review. Int J Biol Macromol 2024; 259:129216. [PMID: 38185294 PMCID: PMC10922702 DOI: 10.1016/j.ijbiomac.2024.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
3
|
Yadav S, Singh R, Kumar P. Bioresponsive inulin‐azobenzene nanostructures for targeted drug delivery to colon. J Appl Polym Sci 2022. [DOI: 10.1002/app.52950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
| | - Reena Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
4
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
5
|
Wang J, Asghar S, Jin X, Chen Z, Huang L, Ping Q, Zong L, Xiao Y. Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect. Colloids Surf B Biointerfaces 2018; 171:468-477. [DOI: 10.1016/j.colsurfb.2018.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
|
6
|
Gao Y, Zhang H, Zhang Y, Lv T, Zhang L, Li Z, Xie X, Li F, Chen H, Jia L. Erlotinib-Guided Self-Assembled Trifunctional Click Nanotheranostics for Distinguishing Druggable Mutations and Synergistic Therapy of Nonsmall Cell Lung Cancer. Mol Pharm 2018; 15:5146-5161. [DOI: 10.1021/acs.molpharmaceut.8b00561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Merli D, Profumo A, Bloise N, Risi G, Momentè S, Cucca L, Visai L. Indium/Gallium Maltolate Effects on Human Breast Carcinoma Cells: In Vitro Investigation on Cytotoxicity and Synergism with Mitoxantrone. ACS OMEGA 2018; 3:4631-4640. [PMID: 30023897 PMCID: PMC6044947 DOI: 10.1021/acsomega.7b02026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 06/07/2023]
Abstract
In this study, we aimed to investigate in vitro whether the synthetized indium maltolate (InMal) and gallium maltolate (GaMal) could exert either a toxic effect toward breast cancer cell line MDA-MB-231 or an agonistic activity with mitoxantrone (MTX) in comparison to fibroblast cell line NIH-3T3. Both GaMal and InMal reduced viability of MDA-MB-231, and at a lesser extent of NIH3-T3, in a dose- and time-dependent mode, the outcome was more effective in comparison to MTX sole exposure. Both GaMal and InMal toxicity was reverted by iron citrate addition on NIH3-T3, not on MDA-MB-231, showing indirectly that gallium and indium's mechanisms of action may include iron targeting. The agonistic activity against MDA-MB-231 survival was shown pretreating with 100 μM InMal for 24 h followed by medium exchange with MTX at 10 ng mL-1 or vice-versa but not with co-incubation of both compounds. In particular, InMal pretreating resulted more protective to MTX subsequent exposure.
Collapse
Affiliation(s)
- Daniele Merli
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonella Profumo
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Nora Bloise
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy
- Department
of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| | - Giulia Risi
- Istituto
di ricerche chimiche e biochimiche G. Ronzoni, Via Colombo 81, 20133 Milano, Italy
| | - Stefano Momentè
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Lucia Cucca
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy
- Department
of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| |
Collapse
|