2
|
Mansouri K, Karmaus AL, Fitzpatrick J, Patlewicz G, Pradeep P, Alberga D, Alepee N, Allen TE, Allen D, Alves VM, Andrade CH, Auernhammer TR, Ballabio D, Bell S, Benfenati E, Bhattacharya S, Bastos JV, Boyd S, Brown J, Capuzzi SJ, Chushak Y, Ciallella H, Clark AM, Consonni V, Daga PR, Ekins S, Farag S, Fedorov M, Fourches D, Gadaleta D, Gao F, Gearhart JM, Goh G, Goodman JM, Grisoni F, Grulke CM, Hartung T, Hirn M, Karpov P, Korotcov A, Lavado GJ, Lawless M, Li X, Luechtefeld T, Lunghini F, Mangiatordi GF, Marcou G, Marsh D, Martin T, Mauri A, Muratov EN, Myatt GJ, Nguyen DT, Nicolotti O, Note R, Pande P, Parks AK, Peryea T, Polash AH, Rallo R, Roncaglioni A, Rowlands C, Ruiz P, Russo DP, Sayed A, Sayre R, Sheils T, Siegel C, Silva AC, Simeonov A, Sosnin S, Southall N, Strickland J, Tang Y, Teppen B, Tetko IV, Thomas D, Tkachenko V, Todeschini R, Toma C, Tripodi I, Trisciuzzi D, Tropsha A, Varnek A, Vukovic K, Wang Z, Wang L, Waters KM, Wedlake AJ, Wijeyesakere SJ, Wilson D, Xiao Z, Yang H, Zahoranszky-Kohalmi G, Zakharov AV, Zhang FF, Zhang Z, Zhao T, Zhu H, Zorn KM, et alMansouri K, Karmaus AL, Fitzpatrick J, Patlewicz G, Pradeep P, Alberga D, Alepee N, Allen TE, Allen D, Alves VM, Andrade CH, Auernhammer TR, Ballabio D, Bell S, Benfenati E, Bhattacharya S, Bastos JV, Boyd S, Brown J, Capuzzi SJ, Chushak Y, Ciallella H, Clark AM, Consonni V, Daga PR, Ekins S, Farag S, Fedorov M, Fourches D, Gadaleta D, Gao F, Gearhart JM, Goh G, Goodman JM, Grisoni F, Grulke CM, Hartung T, Hirn M, Karpov P, Korotcov A, Lavado GJ, Lawless M, Li X, Luechtefeld T, Lunghini F, Mangiatordi GF, Marcou G, Marsh D, Martin T, Mauri A, Muratov EN, Myatt GJ, Nguyen DT, Nicolotti O, Note R, Pande P, Parks AK, Peryea T, Polash AH, Rallo R, Roncaglioni A, Rowlands C, Ruiz P, Russo DP, Sayed A, Sayre R, Sheils T, Siegel C, Silva AC, Simeonov A, Sosnin S, Southall N, Strickland J, Tang Y, Teppen B, Tetko IV, Thomas D, Tkachenko V, Todeschini R, Toma C, Tripodi I, Trisciuzzi D, Tropsha A, Varnek A, Vukovic K, Wang Z, Wang L, Waters KM, Wedlake AJ, Wijeyesakere SJ, Wilson D, Xiao Z, Yang H, Zahoranszky-Kohalmi G, Zakharov AV, Zhang FF, Zhang Z, Zhao T, Zhu H, Zorn KM, Casey W, Kleinstreuer NC. CATMoS: Collaborative Acute Toxicity Modeling Suite. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47013. [PMID: 33929906 PMCID: PMC8086800 DOI: 10.1289/ehp8495] [Show More Authors] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD 50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD 50 (LD 50 ≤ 50 mg / kg )], and nontoxic chemicals (L D 50 > 2,000 mg / kg ). METHODS An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495.
Collapse
Affiliation(s)
- Kamel Mansouri
- Integrated Laboratory Systems, LLC, Morrisville, North Carolina, USA
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, North Carolina, USA
| | - Agnes L. Karmaus
- Integrated Laboratory Systems, LLC, Morrisville, North Carolina, USA
| | | | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Prachi Pradeep
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Timothy E.H. Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dave Allen
- Integrated Laboratory Systems, LLC, Morrisville, North Carolina, USA
| | - Vinicius M. Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiania, Brazil
| | - Carolina H. Andrade
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiania, Brazil
| | | | - Davide Ballabio
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Shannon Bell
- Integrated Laboratory Systems, LLC, Morrisville, North Carolina, USA
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Joyce V. Bastos
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiania, Brazil
| | - Stephen Boyd
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - J.B. Brown
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yaroslav Chushak
- Aeromedical Research Department, Force Health Protection, USAFSAM, Dayton, Ohio, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Dayton, Ohio, USA
| | - Heather Ciallella
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Alex M. Clark
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
| | - Viviana Consonni
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | | | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
| | - Sherif Farag
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maxim Fedorov
- Skoltech, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Gadaleta
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Feng Gao
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Jeffery M. Gearhart
- Aeromedical Research Department, Force Health Protection, USAFSAM, Dayton, Ohio, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Dayton, Ohio, USA
| | - Garett Goh
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jonathan M. Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Francesca Grisoni
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Christopher M. Grulke
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Matthew Hirn
- Department of Computational Mathematics, Science & Engineering, Department of Mathematics, Michigan State University, East Lansing, Michigan, USA
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
| | | | - Giovanna J. Lavado
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Xinhao Li
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Filippo Lunghini
- Laboratoire de Chemoinformatique, URM7140, Université de Strasbourg, Strasbourg, France
| | - Giuseppe F. Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Gilles Marcou
- Laboratoire de Chemoinformatique, URM7140, Université de Strasbourg, Strasbourg, France
| | - Dan Marsh
- Underwriters Laboratories, Northbrook, Illinois, USA
| | - Todd Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiania, Brazil
| | | | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Reine Note
- L’Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Paritosh Pande
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Tyler Peryea
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Daniel P. Russo
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Ahmed Sayed
- Rosettastein Consulting UG, Freising, Germany
| | - Risa Sayre
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Timothy Sheils
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Charles Siegel
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Arthur C. Silva
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiania, Brazil
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sergey Sosnin
- Skoltech, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Judy Strickland
- Integrated Laboratory Systems, LLC, Morrisville, North Carolina, USA
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Brian Teppen
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Igor V. Tetko
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- BIGCHEM GmbH, Unterschleissheim, Germany
| | - Dennis Thomas
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Roberto Todeschini
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ignacio Tripodi
- Computer Science/Interdisciplinary Quantitative Biology, University of Colorado, Boulder, Colorado, USA
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, URM7140, Université de Strasbourg, Strasbourg, France
| | - Kristijan Vukovic
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Zhongyu Wang
- School of Environmental Sciences and Technology, Dalian University of Technology; Dalian, Liaoning, China
| | - Liguo Wang
- School of Environmental Sciences and Technology, Dalian University of Technology; Dalian, Liaoning, China
| | | | - Andrew J. Wedlake
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Dan Wilson
- The Dow Chemical Company, Midland, Michigan, USA
| | - Zijun Xiao
- School of Environmental Sciences and Technology, Dalian University of Technology; Dalian, Liaoning, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Gergely Zahoranszky-Kohalmi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Zhen Zhang
- Dow Agrosciences, Indianapolis, Indiana, USA
| | - Tongan Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | | | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, North Carolina, USA
| | - Nicole C. Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, North Carolina, USA
| |
Collapse
|