1
|
Cao Y, Huang S, He Y, Zhang Y, Chen S, Huang M, He F, Chen S, Wang D, Yang Z, Zhao X, Wang X, Wu Z, Ao M, Qiu Y, Fang M. Discovery of 4-(2-(methylamino)thiazol-5-yl)pyrimidin-2-amine derivatives as novel cyclin-dependent kinase 12 (CDK12) inhibitors for the treatment of esophageal squamous cell carcinoma. Bioorg Chem 2025; 158:108302. [PMID: 40056603 DOI: 10.1016/j.bioorg.2025.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/10/2025]
Abstract
The transcriptional cyclin-dependent protein kinase 12 (CDK12), a potential target in various cancers, was recently discovered with a dramatic amplification in esophageal cancer (EC). In this study, we conducted an online database analysis that revealed CDK12 to be overexpressed in esophageal squamous cell carcinoma (ESCC) tissue samples from patients. Furthermore, survival analysis indicated that CDK12 can serve as a prognostic indicator for ESCC patients. In addition, CDK12 knockdown had been shown to reduce the proliferation of ESCC cells. The present study also details the design, synthesis, and biological evaluation of new CDK12 inhibitors which bear the scaffold of 4-(2-(methylamino)thiazol-5-yl)pyrimidin-2-amine. Among the synthesized compounds, H63 has been identified as a potent inhibitor of CDK12 with excellent anti-ESCC activity. Mechanistically, H63 blocked transcription elongation, downregulated the G1-phase core genes to induce cell cycle arrest, and altered the CDK12-ATM/ATR-CHEK1/CHEK2 signaling axis to cause DNA damage. In addition, H63 exhibited favorable pharmacokinetic properties, good safety, and prominent anti-ESCC activity in vivo. The present study suggests that CDK12 is a promising target for ESCC treatment, and H63 is a promising candidate for further clinical development as an anti-ESCC drug.
Collapse
Affiliation(s)
- Yin Cao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Sen Huang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuxiang Zhang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Simian Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Mengxian Huang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shutong Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Di Wang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ziying Yang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xinwei Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiumin Wang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhen Wu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Mingtao Ao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Yingkun Qiu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Xia M, Li Z, Jiang H, Li Y, Hu L, He Y, Huang S, Tang L, Luo C, Gu S, Ding H, Wang M. Discovery of novel imidazo[1,2-b]pyridazine derivatives as potent covalent inhibitors of CDK12/13. Eur J Med Chem 2025; 288:117378. [PMID: 39955845 DOI: 10.1016/j.ejmech.2025.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive subtype of breast cancer, and treatment options for patients with TNBC remain highly limited. Recently, cyclin-dependent kinases 12/13 (CDK12/13) have been identified as promising therapeutic targets for TNBC. In our study, we report the design and synthesis of novel imidazo[1,2-b]pyrazine-based covalent inhibitors of CDK12/13, which exhibit potent inhibitory activity against TNBC cells. Among these compounds, compound 24 emerged as the most potent inhibitor, with CDK12 IC50 of 15.5 nM and CDK13 IC50 of 12.2 nM. Compound 24 forms a covalent bond with Cys1039 of CDK12 and effectively suppresses the proliferation of TNBC cell lines MDA-MB-231 and MDA-MB-468, with EC50 values of 5.0 nM and 6.0 nM, respectively. Compound 24 demonstrated superior efficacy to the currently known CDK12/13 covalent inhibitor, THZ531. These findings suggest compound 24 may be a promising lead for developing CDK12/13-targeted therapies for treating TNBC.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ziteng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hanrui Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongchang He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Siqi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Mingliang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Yang J, Chang Y, Zhou K, Huang W, Tien JCY, Zhang P, Liu W, Zhou L, Zhou Y, Ren X, Mannan R, Mahapatra S, Zhang Y, Hamadeh R, Ervine G, Wang Z, Wang GX, Chinnaiyan AM, Ding K. Discovery of YJZ5118: A Potent and Highly Selective Irreversible CDK12/13 Inhibitor with Synergistic Effects in Combination with Akt Inhibition. J Med Chem 2025; 68:6718-6734. [PMID: 40080446 DOI: 10.1021/acs.jmedchem.5c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Cyclin-dependent kinases 12 and 13 (CDK12/13) have emerged as promising therapeutic targets for castration-resistant prostate cancer (CRPC) and other human cancers. Despite the development of several CDK12/13 inhibitors, challenges remain in achieving an optimal balance of potency, selectivity and pharmacokinetic properties. Here, we report the discovery of YJZ5118, a novel, potent and highly selective covalent inhibitor of CDK12/13 with reasonable pharmacokinetic profiles. YJZ5118 effectively inhibited CDK12 and CDK13 with IC50 values of 39.5 and 26.4 nM, respectively, while demonstrating high selectivity over other CDKs. Mass spectrometry analysis, cocrystal structure determination, and pulldown-proteomic experiments confirmed the compound's covalent binding mode with CDK12/13. Functionally, YJZ5118 efficiently suppressed the transcription of DNA damage response genes, induced DNA damage, and triggered apoptosis. Moreover, the compound significantly inhibited the proliferation of multiple tumor cell lines, particularly prostate cancer cells. Notably, YJZ5118 exhibited synergistic effects with Akt inhibitors both in vitro and in vivo.
Collapse
Affiliation(s)
- Jianzhang Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaijie Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Wenyan Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Licheng Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rudana Hamadeh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grafton Ervine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - George Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Debnath A, Singh RK, Mazumder R, Mazumder A, Srivastava S, Chaudhary H, Mangal S, Sanchitra J, Tyagi PK, Kumar Singh S, Singh AK. Quest for discovering novel CDK12 inhibitor. J Recept Signal Transduct Res 2025; 45:1-21. [PMID: 39697035 DOI: 10.1080/10799893.2024.2441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CDK12 is essential for cellular processes like RNA processing, transcription, and cell cycle regulation, inhibiting cancer cell growth and facilitating macrophage invasion. CDK12 is a significant oncogenic factor in various cancers, including HER2-positive breast cancer, Anaplastic thyroid carcinoma, Hepatocellular carcinoma, prostate cancer, and Ewing sarcoma. It is also regarded as a potential biomarker, emphasizing its broader significance in oncology. Targeting CDK12 offers a promising strategy to develop therapy. Various monoclonal antibodies have drawn wide attention, but they are expensive compared to small-molecule inhibitors, limiting their accessibility and affordability for patients. Consequently, this research aims to identify effective CDK12 inhibitors using comprehensive high-throughput virtual screening. RASPD protocol has been employed to screen three different databases against the target followed by drug-likeness, molecular docking, ADME, toxicity, Consensus molecular docking, MD Simulation, and in-vitro studies MTT assay. The research conducted yielded one compound ZINC11784547 has demonstrated robust binding affinity, favorable ADME features, less toxicity, remarkable stability, and cytotoxic effect. The identified compound holds promise for promoting cancer cell death through CDK12 inhibition.
Collapse
Affiliation(s)
- Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Shikha Srivastava
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Hema Chaudhary
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, India
| | - Saloni Mangal
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Jahanvi Sanchitra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Wang L, Li S, Xiang S, Liu H, Sun H. Elucidating the Selective Mechanism of Drugs Targeting Cyclin-Dependent Kinases with Integrated MetaD-US Simulation. J Chem Inf Model 2024; 64:6899-6911. [PMID: 39172502 DOI: 10.1021/acs.jcim.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cyclin-dependent kinases (CDKs), including CDK12 and CDK13, play crucial roles in regulating the cell cycle and RNA polymerase II activity, making them vital targets for cancer therapies. SR4835 is a selective inhibitor of CDK12/13, showing significant potential for treating triple-negative breast cancer. To elucidate the selective mechanism of SR4835 among three CDKs (CDK13/12/9), we developed an innovative enhanced sampling method, integrated well-tempered metadynamics-umbrella sampling (IMUS). IMUS synergistically combines the comprehensive pathway exploration capability of well-tempered metadynamics (WT-MetaD) with the precise free energy calculation capability of umbrella sampling, enabling the efficient and accurate characterization of drug-target interactions. The accurate calculation of binding free energy and the detailed analysis of the kinetic mechanism of the drug-target interaction using IMUS successfully elucidate the drug selectivity mechanism targeting the three CDKs, showing that the selectivity is primarily arising from differences in the stability of H-bonds within the Hinge region of the kinases and the interaction patterns during the protein-ligand recognition process. These findings also underscore the utility of IMUS in efficiently and accurately capturing drug-target interaction processes with clear mechanisms.
Collapse
Affiliation(s)
- Lingling Wang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Shu Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
6
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Zhang Z, Li Y, Yang J, Li J, Lin X, Liu T, Yang S, Lin J, Xue S, Yu J, Tang C, Li Z, Liu L, Ye Z, Deng Y, Li Z, Chen K, Ding H, Luo C, Lin H. Dual-site molecular glues for enhancing protein-protein interactions of the CDK12-DDB1 complex. Nat Commun 2024; 15:6477. [PMID: 39090085 PMCID: PMC11294606 DOI: 10.1038/s41467-024-50642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Protein-protein interactions (PPIs) stabilization with molecular glues plays a crucial role in drug discovery, albeit with significant challenges. In this study, we propose a dual-site approach, targeting the PPI region and its dynamic surroundings. We conduct molecular dynamics simulations to identify critical sites on the PPI that stabilize the cyclin-dependent kinase 12 - DNA damage-binding protein 1 (CDK12-DDB1) complex, resulting in further cyclin K degradation. This exploration leads to the creation of LL-K12-18, a dual-site molecular glue, which enhances the glue properties to augment degradation kinetics and efficiency. Notably, LL-K12-18 demonstrates strong inhibition of gene transcription and anti-proliferative effects in tumor cells, showing significant potency improvements in MDA-MB-231 (88-fold) and MDA-MB-468 cells (307-fold) when compared to its precursor compound SR-4835. These findings underscore the potential of dual-site approaches in disrupting CDK12 function and offer a structural insight-based framework for the design of cyclin K molecular glues.
Collapse
Affiliation(s)
- Zemin Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiacheng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiongqiang Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ting Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shiling Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jin Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cailing Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziteng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liping Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhengzheng Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yanan Deng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, China.
| | - Cheng Luo
- The School of Pharmacy, Fujian Medical University, Fuzhou, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, China.
| | - Hua Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
8
|
Orhan E, Velazquez C, Tabet I, Fenou L, Rodier G, Orsetti B, Jacot W, Sardet C, Theillet C. CDK inhibition results in pharmacologic BRCAness increasing sensitivity to olaparib in BRCA1-WT and olaparib resistant in Triple Negative Breast Cancer. Cancer Lett 2024; 589:216820. [PMID: 38574883 DOI: 10.1016/j.canlet.2024.216820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.
Collapse
Affiliation(s)
- Esin Orhan
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Carolina Velazquez
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Imene Tabet
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Lise Fenou
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - William Jacot
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France; Oncologie Clinique, Institut Du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, IRCM, U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France.
| |
Collapse
|
9
|
Kuchukulla RR, Hwang I, Kim SH, Kye Y, Park N, Cha H, Moon S, Chung HW, Lee C, Kong G, Hur W. Identification of a novel potent CDK inhibitor degrading cyclinK with a superb activity to reverse trastuzumab-resistance in HER2-positive breast cancer in vivo. Eur J Med Chem 2024; 264:116014. [PMID: 38061230 DOI: 10.1016/j.ejmech.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
CDK12 is overexpressed in HER2-positive breast cancers and promotes tumorigenesis and trastuzumab resistance. Thus CDK12 is a good therapeutic target for the HER2-positive breast tumors resistant to trastuzumab. We previously reported a novel purine-based CDK inhibitor with an ability to degrade cyclinK. Herein, we further explored and synthesized new derivatives, and identified a new potent pan-CDK inhibitor degrading cyclinK (32e). Compound 32e potently inhibited CDK12/cyclinK with IC50 = 3 nM, and suppressed the growth of the both trastuzumab-sensitive and trastuzumab-resistant HER2-positive breast cancer cell lines (GI50's = 9-21 nM), which is superior to a potent, clinical pan-CDK inhibitor dinaciclib. Moreover, 32e (10, 20 mg/kg, ip, twice a week) showed a dose-dependent inhibition of tumor growth and a more dramatic anti-cancer effect than dinaciclib in mouse in vivo orthotopic breast cancer model of trastuzumab-resistant HCC1954 cells. Kinome-wide inhibition profiling revealed that 32e at 1 μM exhibits a decent selectivity toward CDK-family kinases including CDK12 over other wildtype protein kinases. Quantitative global proteomic analysis of 32e-treated HCC1954 cells demonstrated that 32e also showed a decent selectivity in degrading cyclinK over other cyclins. Compound 32e could be developed as a drug for intractable trastuzumab-resistant HER2-positive breast cancers. Our current study would provide a useful insight in designing potent cyclinK degraders.
Collapse
Affiliation(s)
- Ratnakar Reddy Kuchukulla
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Injeoung Hwang
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suhn Hyung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Younghyeon Kye
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Narae Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Heary Cha
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sojeong Moon
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gu Kong
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Pathology, Hanyang University College of Medicine, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Wooyoung Hur
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
10
|
Kozicka Z, Suchyta DJ, Focht V, Kempf G, Petzold G, Jentzsch M, Zou C, Di Genua C, Donovan KA, Coomar S, Cigler M, Mayor-Ruiz C, Schmid-Burgk JL, Häussinger D, Winter GE, Fischer ES, Słabicki M, Gillingham D, Ebert BL, Thomä NH. Design principles for cyclin K molecular glue degraders. Nat Chem Biol 2024; 20:93-102. [PMID: 37679459 PMCID: PMC10746543 DOI: 10.1038/s41589-023-01409-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.
Collapse
Affiliation(s)
- Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biology, University of Basel, Basel, Switzerland
| | - Dakota J Suchyta
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Vivian Focht
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | - Marius Jentzsch
- Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany
| | - Charles Zou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Yale University, New Haven, CT, USA
| | - Cristina Di Genua
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- VantAI, New York, NY, USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seemon Coomar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- IRB Barcelona-Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jonathan L Schmid-Burgk
- Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany
| | | | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
11
|
Zhang L, Zhen Y, Feng L, Li Z, Lu Y, Wang G, Ouyang L. Discovery of a novel dual-target inhibitor of CDK12 and PARP1 that induces synthetic lethality for treatment of triple-negative breast cancer. Eur J Med Chem 2023; 259:115648. [PMID: 37478560 DOI: 10.1016/j.ejmech.2023.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive breast tumors, with a high rate of recurrence and metastasis as well as a poor prognosis. Consequently, it is urgent to find new targeted therapeutic strategies and development of corresponding drugs. Previous studies have shown that CDK12 inhibitors in combination with PARP1 inhibitors is able to induce synthetic lethality in TNBC cells. Here, we reported simultaneously inhibition of CDK12 and PARP1 by genetic or pharmacological approaches synergistically inhibited the proliferation of TNBC cells. Then, a series of small molecule inhibitors targeting both CDK12 and PARP1 were designed and synthesized. The new dual-target inhibitor (12e) showed potent inhibitory activity against CDK12 (IC50 = 285 nM) and PARP1 (IC50 = 34 nM), as well as good anti-proliferative effects in TNBC cell lines. Meanwhile, compound 12e showed favorable synergistic anti-tumor efficacy in cells and xenografts by inhibiting DNA damage repair, promoting cell cycle arrest and apoptosis. Taken together, we successfully synthesized the first effective CDK12-PARP1 dual inhibitor, which is expected to be an attractive therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yongqi Zhen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Department of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Lu Feng
- Department of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guan Wang
- Department of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Ghosh A, Jha PC, Manhas A. Computational studies to explore inhibitors against the cyclin-dependent kinase 12/13 enzyme: an insilco pharmacophore modeling, molecular docking and dynamics approach. J Biomol Struct Dyn 2023; 42:11997-12010. [PMID: 37817503 DOI: 10.1080/07391102.2023.2266472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Cancer is enlisted among the deadliest disease all over the world. The cyclin-dependent kinases 12 and 13 have been identified as cell cycle regulators. They conduct transcription and co-transcriptional processes by phosphorylating the C-terminal of RNA polymerase-II. Inhibition of CDK12 and 13 selectively presents a novel strategy to treat triple-negative breast cancer, but dual inhibitors are still lacking. Here, we report the screening of the natural product compound class against the dual CDK12/13 enzyme by employing various in silico methods. Complexes of CDK12 enzymes are used to form common feature pharmacophore models, whereas we perform receptor-based pharmacophore modelling on CDK13 enzyme owing to the availability of a single PDB. On conducting screening over the representative pharmacophores, the common drug-like screened natural products were shortlisted for conducting molecular docking studies. After molecular docking calculations, the candidates that showed crucial interaction with CDK12 and CDK13 enzymes were shortlisted for simulation studies. Five common docked candidates were selected for molecular dynamics simulations and free energy calculations. Based on the cut-off criteria of free energy calculations, one common hit was selected as the dual CDK12/13 inhibitor. The outcome concluded that the hit with ID CNP0386383 possesses drug-like properties, displays crucial interaction in the binding pocket, and shows stable dynamic behaviour and higher binding energy than the experimentally reported inhibitor of both CDK12 and CDK13 enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Ghosh
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
13
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
14
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
15
|
Araki S, Ohori M, Yugami M. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Front Oncol 2023; 13:1152087. [PMID: 37342192 PMCID: PMC10277747 DOI: 10.3389/fonc.2023.1152087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment.
Collapse
|
16
|
Bai Y, Liu Z, Li Y, Zhao H, Lai C, Zhao S, Chen K, Luo C, Yang X, Wang F. Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation. J Am Chem Soc 2023; 145:11477-11481. [PMID: 37207290 DOI: 10.1021/jacs.3c01697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and development of effective inhibitors for cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) are largely dependent on the understanding of the dynamic inhibition conformations but are difficult to be achieved by conventional characterization tools. Herein, we integrate the structural mass spectrometry (MS) methods of lysine reactivity profiling (LRP) and native MS (nMS) to systematically interrogate both the dynamic molecular interactions and overall protein assembly of CDK12/CDK13-cyclin K (CycK) complexes under the modulation of small molecule inhibitors. The essential structure insights, including inhibitor binding pocket, binding strength, interfacial molecular details, and dynamic conformation changes, can be derived from the complementary results of LRP and nMS. We find the inhibitor SR-4835 binding can greatly destabilize the CDK12/CDK13-CycK interactions in an unusual allosteric activation way, thereby providing a novel alternative for the kinase activity inhibition. Our results underscore the great potential of LRP combination with nMS for the evaluation and rational design of effective kinase inhibitors at the molecular level.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, China Medical University, Shenyang 110122, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wen T, Wang J, Lu R, Tan S, Li P, Yao X, Liu H, Yi Z, Li L, Liu S, Gao P, Qian H, Xie G, Ma F. Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. Eur J Med Chem 2023; 250:115199. [PMID: 36827953 DOI: 10.1016/j.ejmech.2023.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
Deep learning-based in silico alternatives have been demonstrated to be of significant importance in the acceleration of the drug discovery process and enhancement of success rates. Cyclin-dependent kinase 12 (CDK12) is a transcription-related cyclin-dependent kinase that may act as a biomarker and therapeutic target for cancers. However, currently, there is no high selective CDK12 inhibitor in clinical development and the identification of new specific CDK12 inhibitors has become increasingly challenging due to their similarity with CDK13. In this study, we developed a virtual screening workflow that combines deep learning with virtual screening tools and can be applied rapidly to millions of molecules. We designed a Transformer architecture Drug-Target Interaction (DTI) model with dual-branched self-supervised pre-trained molecular graph models and protein sequence models. Our predictive model produced satisfactory predictions for various targets, including CDK12, with several novel hits. We screened a large compound library consisting of 4.5 million drug-like molecules and recommended a list of potential CDK12 inhibitors for further experimental testing. In kinase assay, compared to the positive CDK12 inhibitor THZ531, the compounds CICAMPA-01, 02, 03 displayed more effective inhibition of CDK12, up to three times as much as THZ531. The compounds CICAMPA-03, 05, 04, 07 showed less inhibition of CDK13 compare to THZ531. In vitro, the IC50 of CICAMPA-01, 04, 05, 06, 09 was less than 3 μM in the HER2 positive CDK12 amplification breast cancer cell line BT-474. Overall, this study provides a highly efficient and end-to-end deep learning protocol, in conjunction with molecular docking, for discovering CDK12 inhibitors in cancers. Additionally, we disclose five novel CDK12 inhibitors. These results may accelerate the discovery of novel chemical-class drugs for cancer treatment.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Ping An Healthcare Technology, Beijing, 100027, China
| | - Ruiqiang Lu
- Ping An Healthcare Technology, Beijing, 100027, China; College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shuoyan Tan
- Ping An Healthcare Technology, Beijing, 100027, China; College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Pengyong Li
- School of Computer Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Xiaojun Yao
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, 999078, Macau
| | - Zongbi Yi
- Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Gao
- Ping An Healthcare Technology, Beijing, 100027, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, 100027, China; Ping An Health Cloud Company Limited, Beijing, 100027, China; Ping An International Smart City Technology Co., Ltd., Beijing, 100027, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Wu W, Yu S, Yu X. Transcription-associated cyclin-dependent kinase 12 (CDK12) as a potential target for cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188842. [PMID: 36460141 DOI: 10.1016/j.bbcan.2022.188842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12), a transcription-related cyclin dependent kinase (CDK), plays a momentous part in multitudinous biological functions, such as replication, transcription initiation to elongation and termination, precursor mRNA (pre-mRNA) splicing, intron polyadenylation (IPA), and translation. CDK12 can act as a tumour suppressor or oncogene in disparate cellular environments, and its dysregulation likely provokes tumorigenesis. A comprehensive understanding of CDK12 will tremendously facilitate the exploitation of novel tactics for the treatment and precaution of cancer. Currently, CDK12 inhibitors are nonspecific and nonselective, which profoundly hinders the pharmacological target validation and drug exploitation process. Herein, we summarize the newly comprehension of the biological functions of CDK12 with a focus on recently emerged advancements of CDK12-associated therapeutic approaches in cancers.
Collapse
Affiliation(s)
- Wence Wu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Wang B, Wang Y, Wen Y, Zhang YL, Ni WJ, Tang TT, Cao JY, Yin Q, Jiang W, Yin D, Li ZL, Lv LL, Liu BC. Tubular-specific CDK12 knockout causes a defect in urine concentration due to premature cleavage of the slc12a1 gene. Mol Ther 2022; 30:3300-3312. [PMID: 35581939 PMCID: PMC9552909 DOI: 10.1016/j.ymthe.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Yao Wang
- Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China.
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Qing Yin
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Wei Jiang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Di Yin
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China; Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Tang R, Liu J, Li S, Zhang J, Yu C, Liu H, Chen F, Lv L, Zhang Q, Yuan K, Shao H. A patent and literature review of CDK12 inhibitors. Expert Opin Ther Pat 2022; 32:1055-1065. [PMID: 36120913 DOI: 10.1080/13543776.2022.2126765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cyclin-dependent kinase 12 (CDK12) belongs to the CDK family of serine/threonine protein kinases and associates with cyclin K to exert its biological functions, including regulating gene transcription, mRNA processing and translation. Increasing evidences demonstrate the importance of CDK12 in various human cancers, illustrating its potential as both biomarker and therapeutic target. In addition, CDK12 is also a promising target for the treatment of myotonic dystrophy type 1. Efforts have been taken to discover small molecule inhibitors to validate this important therapeutic target. AREAS COVERED This review covers the patented CDK12 inhibitors from 2016 to present, as well as these from peer-reviewed literature. It provides the reader an update of the discovery strategies, chemical structures and molecular profiling of all available CDK12 inhibitors. EXPERT OPINION CDK12 inhibitors with various mechanism of actions have been discovered and it is a great set of tools to evaluate the therapeutic potential of CDK12 in different disease models. CDK12 inhibitors have shown promising results in myotonic dystrophy type 1 mouse model and several preclinical cancer models either as single agent or combination with other anti-cancer agents. Its therapeutic value awaits more rigorous preclinical testing and further clinical investigation.
Collapse
Affiliation(s)
- Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China.,Center for Clinical Biorepositories and Biospecimen & Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Shuyao Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Junjie Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| | - Qian Zhang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hao Shao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
21
|
Yang J, Chang Y, Tien JCY, Wang Z, Zhou Y, Zhang P, Huang W, Vo J, Apel IJ, Wang C, Zeng VZ, Cheng Y, Li S, Wang GX, Chinnaiyan AM, Ding K. Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. J Med Chem 2022; 65:11066-11083. [PMID: 35938508 PMCID: PMC9876424 DOI: 10.1021/acs.jmedchem.2c00384] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/28/2023]
Abstract
Selective degradation of the cyclin-dependent kinases 12 and 13 (CDK12/13) presents a novel therapeutic opportunity for triple-negative breast cancer (TNBC), but there is still a lack of dual CDK12/13 degraders. Here, we report the discovery of the first series of highly potent and selective dual CDK12/13 degraders by employing the proteolysis-targeting chimera (PROTAC) technology. The optimal compound 7f effectively degraded CDK12 and CDK13 with DC50 values of 2.2 and 2.1 nM, respectively, in MDA-MB-231 breast cancer cells. Global proteomic profiling demonstrated the target selectivity of 7f. In vitro, 7f suppressed expression of core DNA damage response (DDR) genes in a time- and dose-dependent manner. Further, 7f markedly inhibited proliferation of multiple TNBC cell lines including MFM223, with an IC50 value of 47 nM. Importantly, 7f displayed a significantly improved antiproliferative activity compared to the structurally similar inhibitor 4, suggesting the potential advantage of a CDK12/13 degrader for TNBC targeted therapy.
Collapse
Affiliation(s)
- Jianzhang Yang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Yu Chang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jean Ching-Yi Tien
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhen Wang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Yang Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Pujuan Zhang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Josh Vo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid J. Apel
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cynthia Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victoria Zhixuan Zeng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yunhui Cheng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuqin Li
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - George Xiaoju Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes
Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
- Institute
of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China
- The
First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601
Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
22
|
Novel 2,6,9-Trisubstituted Purines as Potent CDK Inhibitors Alleviating Trastuzumab-Resistance of HER2-Positive Breast Cancers. Pharmaceuticals (Basel) 2022; 15:ph15091041. [PMID: 36145262 PMCID: PMC9506414 DOI: 10.3390/ph15091041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
HER2-positive (HER2+) breast cancer is defined by HER2 oncogene amplification on chromosome 17q12 and accounts for 15−20% population of breast-cancer patients. Therapeutic anti-HER2 antibody such as trastuzumab is used as the first-line therapy for HER2-positive breast cancers. However, more than 50% of the patients respond poorly to trastuzumab, illustrating that novel therapy is warranted to overcome the resistance. We previously reported that in the majority of HER2+ breast-cancer patients, CDK12 is co-amplified on 17q12 and involved in developing tumors and trastuzumab resistance, proposing CDK12 as a potential drug target for HER2+ breast cancers. Here, we designed and synthesized novel 2,6,9-trisubstituted purines as potent CDK12 inhibitors showing strong, equipotent antiproliferative activity against trastuzumab-sensitive HER2+ SK-Br3 cells and trastuzumab-resistant HER2+ HCC1954 cells (GI50 values < 50 nM) both of which express a high level of CDK12. Two potent analogue 30d and 30e at 40, 200 nM greatly downregulated the levels of cyclinK and Pol II p-CTD (Ser2), as well as the expression of CDK12 downstream genes (IRS1 and WNT1) in a dose-dependent manner. We also observed structure-property relationship for a subset of potent analogues, and found that 30e is highly stable in liver microsomes with lack of CYP inhibition. In addition, 30d exhibited a synergy with trastuzumab in the both cells, suggesting that our inhibitors could be applied to alleviate trastuzumab-resistance of HER2+ breast cancers and escalate the efficacy of trastuzumab as well. Our study may provide insight into developing a novel therapy for HER2+ breast cancers.
Collapse
|
23
|
Lei P, Zhang J, Liao P, Ren C, Wang J, Wang Y. Current progress and novel strategies that target CDK12 for drug discovery. Eur J Med Chem 2022; 240:114603. [PMID: 35868123 DOI: 10.1016/j.ejmech.2022.114603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
CDK12 is a cyclin-dependent kinase that plays critical roles in DNA replication, transcription, mRNA splicing, and DNA damage repair. CDK12 genomic changes, including mutation, amplification, deletion, and fusion, lead to various cancers, such as colorectal cancer, gastric cancer, and ovarian cancer. An increasing number of CDK12 inhibitors have been reported since CDK12 was identified as a biomarker and cancer therapeutic target. A major challenge lies in that CDK12 and CDK13 share highly similar sequences, which leads to great difficulties in the development of highly selective CDK12 inhibitors. In recent years, great efforts were made in developing selective CDK12 blockers. Techniques including PROTAC and molecular glue degraders were also applied to facilitate their development. Also, the drug combination strategy of CDK12 small molecule inhibitors were studied. This review discusses the latest studies on CDK12 inhibitors and analyzes their structure-activity relationships, shedding light on their further development.
Collapse
Affiliation(s)
- Peng Lei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Peiyu Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Hendricks JA, Beaton N, Chernobrovkin A, Miele E, Hamza GM, Ricchiuto P, Tomlinson RC, Friman T, Borenstain C, Barlaam B, Hande S, Lamb ML, De Savi C, Davies R, Main M, Hellner J, Beeler K, Feng Y, Bruderer R, Reiter L, Molina DM, Castaldi MP. Mechanistic Insights into a CDK9 Inhibitor Via Orthogonal Proteomics Methods. ACS Chem Biol 2022; 17:54-67. [PMID: 34955012 DOI: 10.1021/acschembio.1c00488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent-kinases (CDKs) are members of the serine/threonine kinase family and are highly regulated by cyclins, a family of regulatory subunits that bind to CDKs. CDK9 represents one of the most studied examples of these transcriptional CDKs. CDK9 forms a heterodimeric complex with its regulatory subunit cyclins T1, T2 and K to form the positive transcription elongation factor b (P-TEFb). This complex regulates transcription via the phosphorylation of RNA polymerase II (RNAPolII) on Ser-2, facilitating promoter clearance and transcription elongation and thus remains an attractive therapeutic target. Herein, we have utilized classical affinity purification chemical proteomics, kinobeads assay, compressed CEllular Thermal Shift Assay (CETSA)-MS and Limited Proteolysis (LiP) to study the selectivity, target engagement and downstream mechanistic insights of a CDK9 tool compound. The above experiments highlight the value of quantitative mass spectrometry approaches to drug discovery, specifically proteome wide target identification and selectivity profiling. The approaches utilized in this study unanimously indicated that the CDK family of kinases are the main target of the compound of interest, with CDK9, showing the highest target affinity with remarkable consistency across approaches. We aim to provide guidance to the scientific community on the available chemical biology/proteomic tools to study advanced lead molecules and to highlight pros and cons of each technology while describing our findings in the context of the CDKs biology.
Collapse
Affiliation(s)
- J. Adam Hendricks
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Nigel Beaton
- Biognosys AG, Wagistrasse 21, Schlieren 8952, Switzerland
| | | | - Eric Miele
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Ghaith M. Hamza
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | | | | | - Tomas Friman
- Pelago Bioscience AB, Banvaktsvägen 20, Solna 17148, Sweden
| | | | | | - Sudhir Hande
- Oncology R&D, Boston, Massachusetts 02451, United States
| | | | - Chris De Savi
- Oncology R&D, Boston, Massachusetts 02451, United States
| | - Rick Davies
- Discovery Sciences, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Martin Main
- Discovery Sciences, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Joakim Hellner
- Pelago Bioscience AB, Banvaktsvägen 20, Solna 17148, Sweden
| | | | - Yuehan Feng
- Biognosys AG, Wagistrasse 21, Schlieren 8952, Switzerland
| | | | - Lukas Reiter
- Biognosys AG, Wagistrasse 21, Schlieren 8952, Switzerland
| | | | - M. Paola Castaldi
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| |
Collapse
|
25
|
Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem 2022; 228:114012. [PMID: 34864331 DOI: 10.1016/j.ejmech.2021.114012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) plays a crucial role in DNA-damage response gene transcription and has recently been validated as a promising target in cancer therapy. However, existing CDK12 inhibitors potently inhibit its closest isoform CDK13, which could cause potential toxicity. Therefore, the development of CDK12 inhibitors with isoform-selectivity against CDK13 continues to be a challenge. By taking advantage of the emerging PROteolysis-TArgeting Chimeras (PROTACs) approach, we have synthesized a potent PROTAC degrader PP-C8 based on the noncovalent dual inhibitors of CDK12/13 and demonstrated its specificity for CDK12 over CDK13. Notably, PP-C8 induces profound degradation of cyclin K simultaneously and downregulates the mRNA level of DNA-damage response genes. Global proteomics profiling revealed PP-C8 is highly selective toward CDK12-cyclin K complex. Importantly, PP-C8 demonstrates profound synergistic antiproliferative effects with PARP inhibitor in triple-negative breast cancer (TNBC). The potent and selective CDK12 PROTAC degrader developed in this study could potentially be used to treat CDK12-dependent cancers as combination therapy.
Collapse
|
26
|
Li W, Zhang J, Wang M, Dong R, Zhou X, Zheng X, Sun L. Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery. Curr Top Med Chem 2022; 22:284-304. [PMID: 35021973 DOI: 10.2174/1568026622666220111143949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zhou
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zheng
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
27
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
28
|
Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat Commun 2021; 12:6053. [PMID: 34663829 PMCID: PMC8523534 DOI: 10.1038/s41467-021-26289-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the few cytokines successfully targeted by therapies against inflammatory diseases. However, blocking this well studied and pleiotropic ligand can cause dramatic side-effects. Here, we reason that a systems-level proteomic analysis of TNF signaling could dissect its diverse functions and offer a base for developing more targeted therapies. Therefore, we combine phosphoproteomics time course experiments with subcellular localization and kinase inhibitor analysis to identify functional modules of protein phosphorylation. The majority of regulated phosphorylation events can be assigned to an upstream kinase by inhibiting master kinases. Spatial proteomics reveals phosphorylation-dependent translocations of hundreds of proteins upon TNF stimulation. Phosphoproteome analysis of TNF-induced apoptosis and necroptosis uncovers a key role for transcriptional cyclin-dependent kinase activity to promote cytokine production and prevent excessive cell death downstream of the TNF signaling receptor. This resource of TNF-induced pathways and sites can be explored at http://tnfviewer.biochem.mpg.de/. Tumor necrosis factor (TNF) has various effects on phosphorylation-mediated cellular signaling. Combining phosphoproteomics, subcellular localization analyses and kinase inhibitor assays, the authors provide systems level insights into TNF signaling and identify modulators of TNF-induced cell death.
Collapse
|
29
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Jiang B, Gao Y, Che J, Lu W, Kaltheuner IH, Dries R, Kalocsay M, Berberich MJ, Jiang J, You I, Kwiatkowski N, Riching KM, Daniels DL, Sorger PK, Geyer M, Zhang T, Gray NS. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol 2021; 17:675-683. [PMID: 33753926 PMCID: PMC8590456 DOI: 10.1038/s41589-021-00765-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ruben Dries
- Department of Hematology and Oncology, Boston University, Boston, MA, USA
- Department of Computational Medicine, Boston University, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Inchul You
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Liu H, Liu K, Dong Z. Targeting CDK12 for Cancer Therapy: Function, Mechanism, and Drug Discovery. Cancer Res 2021; 81:18-26. [PMID: 32958547 DOI: 10.1158/0008-5472.can-20-2245] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) is a member of the CDK family of proteins (CDK) and is critical for cancer development. Years of study into CDK12 have generated much information regarding the intricacy of its function and mechanism as well as inhibitors against it for oncological research. However, there remains a lack of understanding regarding the role of CDK12 in carcinogenesis and cancer prevention. An exhaustive comprehension of CDK12 will highly stimulate the development of new strategies for treating and preventing cancer. Here, we review the literature of CDK12, with a focus on its function, its role in signaling, and how to use it as a target for discovery of novel drugs for cancer prevention and therapy.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| |
Collapse
|
32
|
The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2020; 13:117-141. [PMID: 33295810 DOI: 10.4155/fmc-2020-0240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.
Collapse
|
33
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
34
|
CDK12: a potential therapeutic target in cancer. Drug Discov Today 2020; 25:2257-2267. [PMID: 33038524 DOI: 10.1016/j.drudis.2020.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 12 engages in diversified biological functions, from transcription, post-transcriptional modification, cell cycle, and translation to cellular proliferation. Moreover, it regulates the expression of cancer-related genes involved in DNA damage response (DDR) and replication, which are responsible for maintaining genomic stability. CDK12 emerges as an oncogene or tumor suppressor in different cellular contexts, where its dysregulation results in tumorigenesis. Current CDK12 inhibitors are nonselective, which impedes the process of pharmacological target validation and drug development. Herein, we discuss the latest understanding of the biological roles of CDK12 in cancers and provide molecular analyses of CDK12 inhibitors to guide the rational design of selective inhibitors.
Collapse
|
35
|
Liu Y, Hao M, Leggett AL, Gao Y, Ficarro SB, Che J, He Z, Olson CM, Marto JA, Kwiatkowski NP, Zhang T, Gray NS. Discovery of MFH290: A Potent and Highly Selective Covalent Inhibitor for Cyclin-Dependent Kinase 12/13. J Med Chem 2020; 63:6708-6726. [DOI: 10.1021/acs.jmedchem.9b01929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yao Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Mingfeng Hao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Alan L. Leggett
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Yang Gao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Zhixiang He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Calla M. Olson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nicholas P. Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
36
|
Low expression of CDK12 in gastric cancer is correlated with advanced stage and poor outcome. Pathol Res Pract 2020; 216:152962. [PMID: 32534699 DOI: 10.1016/j.prp.2020.152962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/16/2020] [Accepted: 04/11/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family, modulating multiple cellular functions including DNA damage response (DDR), development and cellular differentiation, transcription, mRNA processing, splicing and pre-mRNA processing. CDK12 has been reported as both tumor suppressor and oncogene in various kinds of tumor. The function of CDK12 in gastric cancer (GC) remains unclear. METHODS/RESULTS CDK12 mRNA expression was decreased in GC compared with non-tumor tissue based on GEO database. Also, low mRNA expression of CDK12 was detected in GC cell lines by qPCR. Similarly, CDK12 protein expression was also reduced in GC tissues compared with adjacent non-tumor tissues in 177 GC patients as shown by immunohistochemistry. Low expression of CDK12 was associated with organ metastasis, poorly differentiated adenocarcinoma and advanced stage. Consistent with human protein atlas database analysis, Low expression of CDK12 was correlated with worse overall survival (P < 0.001). Multivariate Cox regression indicated that low expression of CDK12 was an independent prognostic factor for GC patients (P < 0.001). Finally, a gene set enrichment analysis was performed to detect underlying internal mechanisms and biological processes. CONCLUSIONS CDK12 is down-regulated in GC and its expression is negatively correlated with advanced stage, poorly differentiated adenocarcinoma and poor outcomes. Our findings suggest that CDK12 may be a potential tumor suppressor in GC.
Collapse
|
37
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
38
|
Sánchez-Martínez C, Lallena MJ, Sanfeliciano SG, de Dios A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg Med Chem Lett 2019; 29:126637. [PMID: 31477350 DOI: 10.1016/j.bmcl.2019.126637] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Sustained proliferative capacity and gene dysregulation are hallmarks of cancer. In mammalian cells, cyclin-dependent kinases (CDKs) control critical cell cycle checkpoints and key transcriptional events in response to extracellular and intracellular signals leading to proliferation. Significant clinical activity for the treatment of hormone receptor positive metastatic breast cancer has been demonstrated by palbociclib, ribociclib and abemaciclib, dual CDK4/6 inhibitors recently FDA-approved. SY-1365, a CDK7 inhibitor has shown initial encouraging data in phase I for solid tumors treatment. These results have rejuvenated the CDKs research field. This review provides an overview of relevant advances on CDK inhibitor research since 2015 to 2019, with special emphasis on transcriptional CDK inhibitors, new emerging strategies such as target protein degradation and compounds under clinical evaluation.
Collapse
Affiliation(s)
| | - María José Lallena
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Alcobendas (Madrid) 28108, Spain
| | | | - Alfonso de Dios
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, United States
| |
Collapse
|
39
|
Greenleaf AL. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription 2019; 10:91-110. [PMID: 30319007 PMCID: PMC6602566 DOI: 10.1080/21541264.2018.1535211] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023] Open
Abstract
As the new millennium began, CDK12 and CDK13 were discovered as nucleotide sequences that encode protein kinases related to cell cycle CDKs. By the end of the first decade both proteins had been qualified as CTD kinases, and it was emerging that both are heterodimers containing a Cyclin K subunit. Since then, many studies on CDK12 have shown that, through phosphorylating the CTD of transcribing RNAPII, it plays critical roles in several stages of gene expression, notably RNA processing; it is also crucial for maintaining genome stability. Fewer studies on CKD13 have clearly shown that it is functionally distinct from CDK12. CDK13 is important for proper expression of a number of genes, but it also probably plays yet-to-be-discovered roles in other processes. This review summarizes much of the work on CDK12 and CDK13 and attempts to evaluate the results and place them in context. Our understanding of these two enzymes has begun to mature, but we still have much to learn about both. An indicator of one major area of medically-relevant future research comes from the discovery that CDK12 is a tumor suppressor, notably for certain ovarian and prostate cancers. A challenge for the future is to understand CDK12 and CDK13 well enough to explain how their loss promotes cancer development and how we can intercede to prevent or treat those cancers. Abbreviations: CDK: cyclin-dependent kinase; CTD: C-terminal repeat domain of POLR2A; CTDK-I: CTD kinase I (yeast); Ctk1: catalytic subunit of CTDK-I; Ctk2: cyclin-like subunit of CTDK-I; PCAP: phosphoCTD-associating protein; POLR2A: largest subunit of RNAPII; SRI domain: Set2-RNAPII Interacting domain.
Collapse
Affiliation(s)
- Arno L. Greenleaf
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
40
|
Cheng W, Yang Z, Wang S, Li Y, Wei H, Tian X, Kan Q. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures. Eur J Med Chem 2019; 164:615-639. [PMID: 30639897 DOI: 10.1016/j.ejmech.2019.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
The cyclin-dependent protein kinases (CDKs) are protein-serine/threonine kinases that display crucial effects in regulation of cell cycle and transcription. While the excessive expression of CDKs is intimate related to the development of diseases including cancers, which provides opportunities for disease treatment. A large number of small molecules are explored targeting CDKs. CDK/inhibitor co-crystal structures play an important role during the exploration of inhibitors. So far nine kinds of CDK/inhibitor co-crystals have been determined, they account for the highest proportion among the Protein Data Bank (PDB) deposited crystal structures. Herein, we review main co-crystals of CDKs in complex with corresponding inhibitors reported in recent years, focusing our attention on the binding models and the pharmacological activities of inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
41
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
42
|
Ito M, Tanaka T, Toita A, Uchiyama N, Kokubo H, Morishita N, Klein MG, Zou H, Murakami M, Kondo M, Sameshima T, Araki S, Endo S, Kawamoto T, Morin GB, Aparicio SA, Nakanishi A, Maezaki H, Imaeda Y. Discovery of 3-Benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors. J Med Chem 2018; 61:7710-7728. [PMID: 30067358 DOI: 10.1021/acs.jmedchem.8b00683] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochemical properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chemical probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.
Collapse
Affiliation(s)
- Masahiro Ito
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Toshio Tanaka
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Akinori Toita
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Noriko Uchiyama
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hironori Kokubo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Nao Morishita
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Michael G Klein
- Department of Structural Biology , Takeda California Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Hua Zou
- Department of Structural Biology , Takeda California Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Morio Murakami
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Mitsuyo Kondo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomoya Sameshima
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Shinsuke Araki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Satoshi Endo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Gregg B Morin
- Genome Sciences Centre , British Columbia Cancer Agency , 675 West 10th Avenue , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6H 3N1 , Canada
| | - Samuel A Aparicio
- Department of Molecular Oncology , British Columbia Cancer Agency , 675 West 10th Avenue , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Atsushi Nakanishi
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hironobu Maezaki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yasuhiro Imaeda
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| |
Collapse
|
43
|
Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J Clin Pathol 2018; 71:957-962. [PMID: 30104286 DOI: 10.1136/jclinpath-2018-205356] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK that complexes with cyclin K to mediate gene transcription by phosphorylating RNA polymerase II. CDK12 has been demonstrated to specifically upregulate the expression of genes involved in response to DNA damage, stress and heat shock. More recent studies have implicated CDK12 in regulating mRNA splicing, 3' end processing, pre-replication complex assembly and genomic stability during embryonic development. Genomic alterations in CDK12 have been detected in oesophageal, stomach, breast, endometrial, uterine, ovarian, bladder, colorectal and pancreatic cancers, ranging from 5% to 15% of sequenced cases. An increasing number of studies point to CDK12 inhibition as an effective strategy to inhibit tumour growth, and synthetic lethal interactions have been described with MYC, EWS/FLI and PARP/CHK1 inhibition. Herein, we discuss the present literature on CDK12 in cell function and human cancer, highlighting important roles for CDK12 as a clinical biomarker for treatment response and potential as an effective therapeutic target.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| | | | - Christopher J Kemp
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| |
Collapse
|