1
|
Suazo KF, Bělíček J, Schey GL, Auger SA, Petre AM, Li L, Błażewska KM, Kopečný D, Distefano MD. Thinking outside the CaaX-box: an unusual reversible prenylation on ALDH9A1. RSC Chem Biol 2023; 4:913-925. [PMID: 37920391 PMCID: PMC10619140 DOI: 10.1039/d3cb00089c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Jakub Bělíček
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Garrett L Schey
- Department of Medicinal Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis MN 55455 USA
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Łódź Poland
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
2
|
Marchwicka A, Kamińska D, Monirialamdari M, Błażewska KM, Gendaszewska-Darmach E. Protein Prenyltransferases and Their Inhibitors: Structural and Functional Characterization. Int J Mol Sci 2022; 23:ijms23105424. [PMID: 35628237 PMCID: PMC9141697 DOI: 10.3390/ijms23105424] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Protein prenylation is a post-translational modification controlling the localization, activity, and protein–protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Daria Kamińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
- Correspondence:
| |
Collapse
|
3
|
Małolepsza J, Marchwicka A, Serwa RA, Niinivehmas SP, Pentikäinen OT, Gendaszewska-Darmach E, Błażewska KM. Rational design, optimization, and biological evaluation of novel α-Phosphonopropionic acids as covalent inhibitors of Rab geranylgeranyl transferase. J Enzyme Inhib Med Chem 2022; 37:940-951. [PMID: 35354390 PMCID: PMC8973367 DOI: 10.1080/14756366.2022.2053525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Rab geranylgeranyltransferase (GGTase-II, RGGT) catalyses the post-translational modification of eukaryotic Rab GTPases, proteins implicated in several pathologies, including cancer, diabetes, neurodegenerative, and infectious diseases. Thus, RGGT inhibitors are believed to be a potential platform for the development of drugs and tools for studying processes related to the abnormal activity of Rab GTPases. Here, a series of new α-phosphonocarboxylates have been prepared in the first attempt of rational design of covalent inhibitors of RGGT derived from non-covalent inhibitors. These compounds were equipped with electrophilic groups capable of binding cysteines, which are present in the catalytic cavity of RGGT. A few of these analogues have shown micromolar activity against RGGT, which correlated with their ability to inhibit the proliferation of the HeLa cancer cell line. The proposed mechanism of this inhibitory activity was rationalised by molecular docking and mass spectrometric measurements, supported by stability and reactivity studies.
Collapse
Affiliation(s)
- Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Łódź, Poland
| | - Aleksandra Marchwicka
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Remigiusz A Serwa
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Sanna P Niinivehmas
- Institute of Biomedicine, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Łódź, Poland
| |
Collapse
|
4
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
5
|
Kusy D, Marchwicka A, Małolepsza J, Justyna K, Gendaszewska-Darmach E, Błażewska KM. Synthesis of the 6-Substituted Imidazo[1,2-a]Pyridine-3-yl-2- Phosphonopropionic Acids as Potential Inhibitors of Rab Geranylgeranyl Transferase. Front Chem 2021; 8:596162. [PMID: 33490034 PMCID: PMC7815931 DOI: 10.3389/fchem.2020.596162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022] Open
Abstract
Twelve phosphonopropionates derived from 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC) were synthesized and evaluated for their activity as inhibitors of protein geranylgeranylation. The nature of the substituent in the C6 position of imidazo[1,2-a]pyridine ring was responsible for the compound's activity against Rab geranylgeranyl transferase (RGGT). The most active inhibitors disrupted Rab11A prenylation in the human cervical carcinoma HeLa cell line. The esterification of carboxylic acid in the phosphonopropionate moiety turned the inhibitor into an inactive analog.
Collapse
Affiliation(s)
- Damian Kusy
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Aleksandra Marchwicka
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Joanna Małolepsza
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Katarzyna Justyna
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland.,Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | | |
Collapse
|
6
|
Kusy D, Wojciechowska A, Małolepsza J, Błażewska KM. Functionalization of the imidazo[1,2- a]pyridine ring in α-phosphonoacrylates and α-phosphonopropionates via microwave-assisted Mizoroki-Heck reaction. Beilstein J Org Chem 2020; 16:15-21. [PMID: 31976012 PMCID: PMC6964661 DOI: 10.3762/bjoc.16.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
A series of new phosphonocarboxylates containing an imidazo[1,2-a]pyridine ring has been synthesized via the microwave-assisted Mizoroki–Heck reaction. The efficient modification of the imidazo[1,2-a]pyridine ring has been achieved as late-stage functionalization, enabling and accelerating the generation of a library of compounds from a common precursor.
Collapse
Affiliation(s)
- Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St, 90-924 Lodz, Poland
| | - Agata Wojciechowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St, 90-924 Lodz, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St, 90-924 Lodz, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St, 90-924 Lodz, Poland
| |
Collapse
|
7
|
Bhuiyan NH, Varney ML, Wiemer DF, Holstein SA. Novel benzimidazole phosphonates as potential inhibitors of protein prenylation. Bioorg Med Chem Lett 2019; 29:126757. [PMID: 31699606 PMCID: PMC6911684 DOI: 10.1016/j.bmcl.2019.126757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Benzimidazole carboxyphosphonates and bisphosphonates have been prepared and evaluated for their activity as inhibitors of protein prenylation or isoprenoid biosynthesis. The nature of the phosphonate head group was found to dictate enzyme specificity. The lead carboxyphosphonate inhibits geranylgeranyl transferase II while its corresponding bisphosphonate analogue potently inhibits farnesyl diphosphate synthase. The most active inhibitors effectively disrupted protein prenylation in human multiple myeloma cells.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|