1
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2025; 20:e202400682. [PMID: 39498961 PMCID: PMC11831885 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Stefania Butini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| |
Collapse
|
2
|
Xu L, Ma H, An X, Zhang T, Lai D, Zhou L, Wang M. Total Synthesis, structure revision and antifungal activity of palmarumycin B 8 and B 7. Bioorg Chem 2024; 148:107479. [PMID: 38772292 DOI: 10.1016/j.bioorg.2024.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Palmarymycins B8 (1), its regioisomer (2) and B7 (3) were synthesized via 10-, 9-, and 11-steps in 6.5 %, 2.3 % and 0.54 % overall yields from chroman-4-one (4), 4-hydroxyindanone (12), and 2,5-dimethoxybenzaldehyde (20) as the starting materials, using benzyl protection, enol trimethylsilyl ether by TMSOTf, Rubottom oxidation and deprotection with hydrogenation under Pd/C catalyst as the key steps, respectively. Their structures were characterized by 1H, 13C NMR, COSY, HSQC, HMBC and HR-ESI-MS spectral data. The structure of palmarumycin B8 was revised from 1 to 2 based on the total synthesis, 2D NMR analysis and DFT calculation. The antifungal assay results indicated that palmarumycin B8 (1) showed moderate inhibitory activity against Phytophthora capsica. Compounds 15 and 16 exhibited excellent in vitro antifungal activities against P. capsica with EC50 values of 2.17 and 8.50 μg/mL, respectively.
Collapse
Affiliation(s)
- Leichuan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Luancheng District 051432, Hebei Province, People's Republic of China.
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
3
|
Aksenov NA, Aksenov DA, Ganusenko DD, Kurenkov IA, Aksenov AV. A Diastereoselective Assembly of Tetralone Derivatives via a Tandem Michael Reaction and ipso-Substitution of the Nitro Group. J Org Chem 2023; 88:5639-5651. [PMID: 37068176 DOI: 10.1021/acs.joc.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A highly diastereoselective tandem reaction of 2'-nitrochalcones is reported, involving Michael addition and a subsequent ipso-substitution of the nitro group to produce 1-tetralones with two contiguous chiral centers. A related annulation reaction of 2'-nitrochalcones with potassium cyanide affording 1-indanones with a C3-quaternary chiral center is also demonstrated.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Daniil D Ganusenko
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| |
Collapse
|
4
|
Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. Recent Advances with KDM4 Inhibitors and Potential Applications. J Med Chem 2022; 65:9564-9579. [PMID: 35838529 PMCID: PMC9531573 DOI: 10.1021/acs.jmedchem.2c00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histone lysine demethylase 4 (KDM4) family plays an important role in regulating gene transcription, DNA repair, and metabolism. The dysregulation of KDM4 functions is associated with many human disorders, including cancer, obesity, and cardiovascular diseases. Selective and potent KDM4 inhibitors may help not only to understand the role of KDM4 in these disorders but also to provide potential therapeutic opportunities. Here, we provide an overview of the field and discuss current status, challenges, and opportunities lying ahead in the development of KDM4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yan Wang
- Department of Geriatrics and Occupational Disease, Qingdao Central Hospital, Qingdao 266044, China
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163, United States
| |
Collapse
|
5
|
del Moral-Morales A, Salgado-Albarrán M, Ortiz-Gutiérrez E, Pérez-Hernández G, Soto-Reyes E. Transcriptomic and Drug Discovery Analyses Reveal Natural Compounds Targeting the KDM4 Subfamily as Promising Adjuvant Treatments in Cancer. Front Genet 2022; 13:860924. [PMID: 35480330 PMCID: PMC9036480 DOI: 10.3389/fgene.2022.860924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
KDM4 proteins are a subfamily of histone demethylases that target the trimethylation of lysines 9 and 36 of histone H3, which are associated with transcriptional repression and elongation respectively. Their deregulation in cancer may lead to chromatin structure alteration and transcriptional defects that could promote malignancy. Despite that KDM4 proteins are promising drug targets in cancer therapy, only a few drugs have been described as inhibitors of these enzymes, while studies on natural compounds as possible inhibitors are still needed. Natural compounds are a major source of biologically active substances and many are known to target epigenetic processes such as DNA methylation and histone deacetylation, making them a rich source for the discovery of new histone demethylase inhibitors. Here, using transcriptomic analyses we determined that the KDM4 family is deregulated and associated with a poor prognosis in multiple neoplastic tissues. Also, by molecular docking and molecular dynamics approaches, we screened the COCONUT database to search for inhibitors of natural origin compared to FDA-approved drugs and DrugBank databases. We found that molecules from natural products presented the best scores in the FRED docking analysis. Molecules with sugars, aromatic rings, and the presence of OH or O- groups favor the interaction with the active site of KDM4 subfamily proteins. Finally, we integrated a protein-protein interaction network to correlate data from transcriptomic analysis and docking screenings to propose FDA-approved drugs that could be used as multitarget therapies or in combination with the potential natural inhibitors of KDM4 enzymes. This study highlights the relevance of the KDM4 family in cancer and proposes natural compounds that could be used as potential therapies.
Collapse
Affiliation(s)
- Aylin del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| |
Collapse
|
6
|
Souto JA, Román D, Domínguez M, Lera ÁR. Synthetic Studies on Alotamide A: Construction of
N
‐Demethylalotamide A. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- José A. Souto
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - David Román
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - Marta Domínguez
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - Ángel R. Lera
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| |
Collapse
|
7
|
Fu Y, Zhao X, Chen D, Luo J, Huang S. Cu-catalyzed coupling of indanone oxime acetates with thiols to 2,3-difunctionalized indenones. Chem Commun (Camb) 2021; 57:10719-10722. [PMID: 34581714 DOI: 10.1039/d1cc04167c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Cu-catalyzed coupling reaction of indanone oxime acetates with thiols has been developed for the synthesis of 2,3-functionalized 1-indenones. This protocol has several features including easy mild reaction conditions, stabilized enamine products, good tolerance of functional groups, and no external oxidants. This reaction enables direct derivatization on the indanone ring to provide valuable functionalized indenones at room temperature.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
8
|
Baby S, Gurukkala Valapil D, Shankaraiah N. Unravelling KDM4 histone demethylase inhibitors for cancer therapy. Drug Discov Today 2021; 26:1841-1856. [PMID: 34051367 DOI: 10.1016/j.drudis.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic enzyme-targeted therapy is a promising new development in the field of drug discovery. To date, histone deacetylases and DNA methyltransferases have been investigated as druggable epigenetic enzyme targets in cancer therapeutics. Histone methyltransferases and lysine demethylase inhibitors are the latest groups of epi-drugs being actively studied in clinical trials. KDM4s are JmjC domain-containing histone H3 lysine 9/36 demethylase enzymes, belonging to the 2-OG-dependent oxygenases, which are upregulated in multiple malignancies. In the recent years, these enzymes have captured much attention as a novel target in cancer therapy. Herein, we traverse the discovery path and current challenges in designing potent KDM4 inhibitors as potential anticancer agents. We discuss the considerable efforts and proposed future strategies to develop selective small molecule inhibitors of KDM4s, highlighting scaffold candidates and cyclic skeletons for which activity data, selectivity profiles and structure-activity relationships (SARs) have been studied.
Collapse
Affiliation(s)
- Stephin Baby
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
9
|
Santhi J, Baire B. One‐pot, Direct Synthesis of 3‐Hydroxy‐3‐aryl‐1‐indanones and their 2‐Benzylidene Derivatives from 2‐Alkynylbenzophenones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jampani Santhi
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| | - Beeraiah Baire
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| |
Collapse
|
10
|
Souto JA, Sarno F, Nebbioso A, Papulino C, Álvarez R, Lombino J, Perricone U, Padova A, Altucci L, de Lera ÁR. A New Family of Jumonji C Domain-Containing KDM Inhibitors Inspired by Natural Product Purpurogallin. Front Chem 2020; 8:312. [PMID: 32523934 PMCID: PMC7261929 DOI: 10.3389/fchem.2020.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant epigenetic modifications are involved in cancer development. Jumonji C domain-containing histone lysine demethylases (KDMs) are found mainly up-regulated in breast, prostate, and colon cancer. Currently, growing interest is focusing on the identification and development of new inhibitors able to block the activity of KDMs and thus reduce tumor progression. KDM4A is known to play a role in several cellular physiological processes, and was recently found overexpressed in a number of pathological states, including cancer. In this work, starting from the structure of purpurogallin 9aa, previously identified as a natural KDM4A inhibitor, we synthesized two main sets of compound derivatives in order to improve their inhibitory activity against KDM4A in vitro and in cells, as well as their antitumor action. Based on the hypothetical biogenesis of the 5-oxo-5H-benzo[7]annulene skeleton of the natural product purpurogallin (Salfeld, 1960; Horner et al., 1961; Dürckheimer and Paulus, 1985; Tanaka et al., 2002; Yanase et al., 2005) the pyrogallol and catechol units were first combined with structural modifications at different positions of the aryl ring using enzyme-mediated oxidative conditions, generating a series of benzotropolone analogs. Two of the synthetic analogs of purpurogallin, 9ac and 9bc, showed an efficient inhibition (50 and 80%) of KDM4A in enzymatic assays and in cells by increasing levels of its specific targets, H3K9me3/2 and H3K36me3. However, these two compounds/derivatives did not induce cell death. We then synthesized a further set of analogs of these two compounds with greater structural diversification. The most potent of these analogs, 9bf, displayed the highest KDM4A inhibitory enzymatic activity in vitro (IC50 of 10.1 and 24.37 μM) in colon cancer cells, and the strongest antitumor action in several solid and hematological human cancer cell lines with no toxic effect in normal cells. Our findings suggest that further development of this compound and its derivatives may lead to the identification of new therapeutic antitumor agents acting through inhibition of KDM4A.
Collapse
Affiliation(s)
- José A Souto
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Federica Sarno
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | | | - Rosana Álvarez
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | | | | | | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | - Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
11
|
Roatsch M, Hoffmann I, Abboud MI, Hancock RL, Tarhonskaya H, Hsu KF, Wilkins SE, Yeh TL, Lippl K, Serrer K, Moneke I, Ahrens TD, Robaa D, Wenzler S, Barthes NPF, Franz H, Sippl W, Lassmann S, Diederichs S, Schleicher E, Schofield CJ, Kawamura A, Schüle R, Jung M. The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases. ACS Chem Biol 2019; 14:1737-1750. [PMID: 31287655 DOI: 10.1021/acschembio.9b00289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fe(II)- and 2-oxoglutarate (2OG)-dependent JumonjiC domain-containing histone demethylases (JmjC KDMs) are "epigenetic eraser" enzymes involved in the regulation of gene expression and are emerging drug targets in oncology. We screened a set of clinically used iron chelators and report that they potently inhibit JMJD2A (KDM4A) in vitro. Mode of action investigations revealed that one compound, deferasirox, is a bona fide active site-binding inhibitor as shown by kinetic and spectroscopic studies. Synthesis of derivatives with improved cell permeability resulted in significant upregulation of histone trimethylation and potent cancer cell growth inhibition. Deferasirox was also found to inhibit human 2OG-dependent hypoxia inducible factor prolyl hydroxylase activity. Therapeutic effects of clinically used deferasirox may thus involve transcriptional regulation through 2OG oxygenase inhibition. Deferasirox might provide a useful starting point for the development of novel anticancer drugs targeting 2OG oxygenases and a valuable tool compound for investigations of KDM function.
Collapse
Affiliation(s)
- Martin Roatsch
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Inga Hoffmann
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Martine I Abboud
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Rebecca L Hancock
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kuo-Feng Hsu
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Tzu-Lan Yeh
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Kerstin Serrer
- Institute of Physical Chemistry , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg i.Br. , Germany
| | - Isabelle Moneke
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , German Cancer Consortium (DKTK)-Partner Site Freiburg, Breisacher Straße 115 , 79106 Freiburg i.Br. , Germany
| | - Theresa D Ahrens
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 115a , 79106 Freiburg i.Br. , Germany
| | - Dina Robaa
- Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle (Saale) , Germany
| | - Sandra Wenzler
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Nicolas P F Barthes
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| | - Henriette Franz
- Central Clinical Research, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 66 , 79106 Freiburg i.Br. , Germany
| | - Wolfgang Sippl
- Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle (Saale) , Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 115a , 79106 Freiburg i.Br. , Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , German Cancer Consortium (DKTK)-Partner Site Freiburg, Breisacher Straße 115 , 79106 Freiburg i.Br. , Germany
- Division of RNA Biology & Cancer , German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280 , 69120 Heidelberg , Germany
| | - Erik Schleicher
- Institute of Physical Chemistry , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg i.Br. , Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Akane Kawamura
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Roland Schüle
- Central Clinical Research, Medical Center and Faculty of Medicine , University of Freiburg , Breisacher Straße 66 , 79106 Freiburg i.Br. , Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg i.Br. , Germany
| |
Collapse
|