1
|
Li Y, Niu H, Huang L, Zhang L, Mao L, Wan P, Ma Z, Peng X, Wan K, Zeng Z. Research Note: Synergistic effect of isopropoxy benzene guanidine and colistin against mcr-1-positive Escherichia coli in vitro and in duck intestine infection models. Poult Sci 2024; 103:104018. [PMID: 39043027 PMCID: PMC11318535 DOI: 10.1016/j.psj.2024.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Colistin (CST) is considered as "agent of last resort" against gram-negative bacteria as feed additive. Its clinical effectiveness has reduced since the emergence of mcr-1 gene in ducks. Isopropoxy benzene guanidine (IBG), a new guanidine derivative, showed positive effects on improving animal weights and alleviating intestinal pathogens, therefore, the objective of this study was to evaluate the effect of this compound supplement with CST in ducks and explore the possibilities in feed additive. A total of fifteen duck-origin Escherichia coli carrying the mcr-1 gene were included in this study. A checkerboard microdilution assay was used to evaluate the in vitro antibacterial activity of IBG combined with CST against mcr-1-positive E. coli. A 3-by-2 time-kill array of IBG (16, 32, and 64 μg/mL) and CST (1/2 MIC and 1/4 MIC) over 24 hours was utilized to characterize the activity of the agents alone and in combination against E. coli strain 1 in vitro. The intestinal colonization model was used to evaluate the in vivo effect of IBG combined with CST. These results indicated that the combination of IBG plus CST showed a synergistic effect against all clinical isolates (FICI < 0.5). The bacterial burden was reduced by more than 2 log10 CFU/mL when E. coli strain 1 was tested with 1/2 MIC CST plus 64 μg/mL IBG for 24 h. Further experiments in vivo demonstrated that the CST combined with IBG was able to increase duck weights, reduced intestinal pathogenic E. coli and showed a synergistic antibacterial effect. Combination of CST (4 mg/kg b.w.) plus IBG (32 or 64 mg/kg b.w.) achieved 1.84 to 3.29 log10 CFU/g killing after 7 d of therapy, which was significantly different from that in the challenge control group (p<0.05). In summary, our study demonstrated the potential use of IBG as feed additive for veterinary purposes in ducks and provided new insights into overcoming resistance in the future.
Collapse
Affiliation(s)
- Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Huijun Niu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lang Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lingxuan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lingxiang Mao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenbao Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou 510663, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Su C, Chen Z, Feng Q, Wei F, Zhang M, Mo A, Huang HH, Hu H, Liu D. Highly Efficient Visible-Light-Driven CO 2-to-CO Conversion by Coordinatively Unsaturated Co-Salen Complexes in a Water-Containing System. Inorg Chem 2022; 61:19748-19755. [PMID: 36417273 DOI: 10.1021/acs.inorgchem.2c02515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of cost-effective catalysts for CO2 reduction is highly desired but remains a significant challenge. The unsaturated coordination metal center in a catalyst is favorable for the process of catalytic CO2 reduction. In this paper, two asymmetric salen ligands were used to synthesize two coordinatively unsaturated Co-salen complexes. The two Co-salen complexes exhibit an unsaturated coordination pattern and display high activity and CO selectivity for visible-light-driven CO2 reduction in a water-containing system. The photocatalytic performance of 2 is higher than that of 1 because the reduction potential of the catalytic CoII center and the energy barrier of the catalytic transition states of 2 are lower than those of 1, with turnover numbers (TONCO), turnover frequencies (TOF), and CO selectivity values of 8640, 0.24 s-1, and 97% for 2, respectively. The photocatalytic reduction of CO2 to CO for 2 is well supported by control experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Chao Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Fangsha Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Mingling Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Anna Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
3
|
Synthesis, characterization, anti-tuberculosis activity and molecular modeling studies of thiourea derivatives bearing aminoguanidine moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
In Vitro Activity of Robenidine Analogues NCL259 and NCL265 against Gram-Negative Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11101301. [PMID: 36289959 PMCID: PMC9598656 DOI: 10.3390/antibiotics11101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative pathogens, especially Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Enterobacter spp., are recognized by the World Health Organization as the most critical priority pathogens in urgent need of drug development. In this study, the in vitro antimicrobial activity of robenidine analogues NCL259 and NCL265 was tested against key human and animal Gram-negative clinical isolates and reference strains. NCL259 and NCL265 demonstrated moderate antimicrobial activity against these Gram-negative priority pathogens with NCL265 consistently more active, achieving lower minimum inhibitory concentrations (MICs) in the range of 2−16 µg/mL. When used in combination with sub-inhibitory concentrations of polymyxin B to permeabilize the outer membrane, NCL259 and NCL265 elicited a synergistic or additive activity against the reference strains tested, reducing the MIC of NCL259 by 8- to 256- fold and the MIC of NCL265 by 4- to 256- fold. A small minority of Klebsiella spp. isolates (three) were resistant to both NCL259 and NCL265 with MICs > 256 µg/mL. This resistance was completely reversed in the presence of the efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide (PAβN) to yield MIC values of 8−16 µg/mL and 2−4 µg/mL for NCL259 and NCL256, respectively. When NCL259 and NCL265 were tested against wild-type E. coli isolate BW 25113 and its isogenic multidrug efflux pump subunit AcrB deletion mutant (∆AcrB), the MIC of both compounds against the mutant ∆AcrB isolate was reduced 16-fold compared to the wild-type parent, indicating a significant role for the AcrAB-TolC efflux pump from Enterobacterales in imparting resistance to these robenidine analogues. In vitro cytotoxicity testing revealed that NCL259 and NCL265 had much higher levels of toxicity to a range of human cell lines compared to the parent robenidine, thus precluding their further development as novel antibiotics against Gram-negative pathogens.
Collapse
|
5
|
Sánchez-González R, Leyton P, Aguilar LF, Reyna-Jeldes M, Coddou C, Díaz K, Mellado M. Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms 2022; 10:microorganisms10081483. [PMID: 35893541 PMCID: PMC9330556 DOI: 10.3390/microorganisms10081483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, antimicrobial resistance is a serious concern associated with the reduced efficacy of traditional antibiotics and an increased health burden worldwide. In response to this challenge, the scientific community is developing a new generation of antibacterial molecules. Contributing to this effort, and inspired by the resveratrol structure, five new resveratrol-dimers (9a−9e) and one resveratrol-monomer (10a) were synthetized using 2,5-dibromo-1,4-diaminobenzene (8) as the core compound for Schiff base bridge conformation. These compounds were evaluated in vitro against pathogenic clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus sp., and Listeria monocytogenes. Antibacterial activity measurements of resveratrol-Schiff base derivatives (9a−9e) and their precursors (4−8) showed high selectivity against Listeria monocytogenes, being 2.5 and 13.7 times more potent than chloramphenicol, while resveratrol showed an EC50 > 320 µg/mL on the same model. Moreover, a prospective mechanism of action for these compounds against L. monocytogenes strains was proposed using molecular docking analysis, finding a plausible inhibition of internalin C (InlC), a surface protein relevant in bacteria−host interaction. These results would allow for the future development of new molecules for listeriosis treatment based on compound 8.
Collapse
Affiliation(s)
- Rodrigo Sánchez-González
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Patricio Leyton
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Luis F. Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Correspondence: (K.D.); (M.M.)
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Correspondence: (K.D.); (M.M.)
| |
Collapse
|
6
|
Amino Alcohols as Potential Antibiotic and Antifungal Leads. Molecules 2022; 27:molecules27072050. [PMID: 35408448 PMCID: PMC9000800 DOI: 10.3390/molecules27072050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Five focused compound libraries (forty-nine compounds), based on prior studies in our laboratory were synthesized and screened for antibiotic and anti-fungal activity against S. aureus, E. coli, K. pneumoniae, P. aeruginosa, A. baumannii, C. albicans and C. neoformans. Low levels of activity, at the initial screening concentration of 32 μg/mL, were noted with analogues of (Z)-2-(3,4-dichlorophenyl)-3-phenylacrylonitriles which made up the first two focused libraries produced. The most promising analogues possessing additional substituents on the terminal aromatic ring of the synthesised acrylonitriles. Modifications of the terminal aromatic moiety were explored through epoxide installation flowed by flow chemistry mediated ring opening aminolysis with discreet sets of amines to the corresponding amino alcohols. Three new focused libraries were developed from substituted anilines, cyclic amines, and phenyl linked heterocyclic amines. The aniline-based compounds were inactive against the bacterial and fungal lines screened. The introduction of a cyclic, such as piperidine, piperazine, or morpholine, showed >50% inhibition when evaluated at 32 μg/mL compound concentration against methicillin-resistant Staphylococcus aureus. Examination of the terminal aromatic substituent via oxirane aminolysis allowed for the synthesis of three new focused libraries of afforded amino alcohols. Aromatic substituted piperidine or piperazine switched library activity from antibacterial to anti-fungal activity with ((Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)phenyl)acrylonitrile), ((Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(4-(4-hydroxyphenyl)piperazin-1-yl)propoxy)-phenyl)acrylonitrile) and ((Z)-3-(4-(3-(4-cyclohexylpiperazin-1-yl)-2-hydroxypropoxy)-phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile) showing >95% inhibition of Cryptococcus neoformans var. grubii H99 growth at 32 μg/mL. While (Z)-3-(4-(3-(cyclohexylamino)-2-hydroxypropoxy)phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile, (S,Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(piperidin-1-yl)propoxy)phenyl)acrylonitrile, (R,Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(piperidin-1-yl)propoxy)phenyl)acrylonitrile, (Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(D-11-piperidin-1-yl)propoxy)phenyl)-acrylonitrile, and (Z)-3-(4-(3-(4-cyclohexylpiperazin-1-yl)-2-hydroxypropoxy)-phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile 32 μg/mL against Staphylococcus aureus.
Collapse
|
7
|
Krátký M, Štěpánková Š, Konečná K, Svrčková K, Maixnerová J, Švarcová M, Janďourek O, Trejtnar F, Vinšová J. Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors. Pharmaceuticals (Basel) 2021; 14:1229. [PMID: 34959630 PMCID: PMC8704707 DOI: 10.3390/ph14121229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (J.V.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Klára Konečná
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (K.K.); (O.J.)
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (J.M.); (F.T.)
| | - Markéta Švarcová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (J.V.)
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic
| | - Ondřej Janďourek
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (K.K.); (O.J.)
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (J.M.); (F.T.)
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (J.V.)
| |
Collapse
|
8
|
Fuller RO, Taylor MR, Duggin M, Bissember AC, Canty AJ, Judd MM, Cox N, Moggach SA, Turner GF. Enhanced synthesis of oxo-verdazyl radicals bearing sterically-and electronically-diverse C3-substituents. Org Biomol Chem 2021; 19:10120-10138. [PMID: 34757372 DOI: 10.1039/d1ob01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic viability of the hydrazine- and phosgene-free synthesis of 1,5-dimethyl oxo-verdazyl radicals has been improved via a detailed study investigating the influence of the aryl substituent on tetrazinanone ring formation. Although it is well established that functionalisation at the C3 position of the tetrazinanone ring does not influence the nature of the radical, it is crucial in applications development. The synthetic route involves a 4-step sequence: Schiff base condensation of a carbohydrazide with an arylaldehyde, alkylation, ring closure then subsequent oxidation to the radical. We found that the presence of strong electron-donating substituents and electron rich heterocycles, result in a significant reduction in yield during both the alkylation and ring closure steps. This can, in part, be alleviated by milder alkylation conditions and further substitution of the aryl group. In comparison, more facile formation of the tetrazine ring was observed with examples containing electron-withdrawing groups and with meta- or para-substitution. Density functional theory suggests that the ring closure proceeds via the formation of an ion pair. Electron paramagnetic resonance spectroscopy provides insight into the precise electronic structure of the radical with small variations in hyperfine coupling constants revealing subtle differences.
Collapse
Affiliation(s)
- Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Madeleine R Taylor
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Martyna M Judd
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Stephen A Moggach
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
9
|
Krollenbrock A, Li Y, Kelly JX, Riscoe MK. Robenidine Analogues Are Potent Antimalarials in Drug-Resistant Plasmodium falciparum. ACS Infect Dis 2021; 7:1956-1968. [PMID: 33724773 PMCID: PMC8273112 DOI: 10.1021/acsinfecdis.1c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Robenidine is a veterinary drug used in the poultry industry to treat coccidiosis
caused by parasites in the Eimeria genus. Though this compound and
related aminoguanidines have recently been studied in other pathogens, the chemotype has
not been systematically explored to optimize antimalarial activity despite the close
genetic relationship between Eimeria and Plasmodium
(both are members of the Apicomplexa phylum of unicellular, spore-forming parasites). In
this study, a series of aminoguanidine robenidine analogues was prepared and tested
in vitro against Plasmodium falciparum, including
multidrug-resistant strains. Selected compounds were further evaluated in
vivo against murine Plasmodium yoelii in mice. Iterative
structure–activity relationship studies led to the discovery of 1,
an aminoguanidine with excellent activity against drug-resistant malaria in
vitro and impressive in vivo efficacy with an
ED50 value of 0.25 mg/kg/day in a standard 4-day test.
Collapse
Affiliation(s)
- Alina Krollenbrock
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 Sam Jackson Boulevard, Portland, Oregon 97239, United States
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Yuexin Li
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Jane Xu Kelly
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Michael K. Riscoe
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 Sam Jackson Boulevard, Portland, Oregon 97239, United States
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
10
|
Xu YY, Liu HK, Wang ZK, Song B, Zhang DW, Wang H, Li Z, Li X, Li ZT. Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. J Org Chem 2021; 86:3943-3951. [PMID: 33599126 DOI: 10.1021/acs.joc.0c02792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two organic cages have been prepared in situ in water through the 2 + 3 hydrazone coupling of two pyridinium-derived trialdehydes and oxalohydrazide. The highly water-soluble cages encapsulate and solubilize linear neutral molecules. Such encapsulation has been applied for the promotion of both two- or three-component hydrazone condensation in water. For two-component reactions, the yields of the resulting monohydrazones are increased from 5-10 to 90-96%. For three-component reactions of hydrazinecarbohydrazide with 11 aromatic aldehydes, in the presence of the organic cages, the bihydrazone products can be produced in 88-96% yields. In contrast, without the promotion of the organic cages, 9 of the reactions do not afford the corresponding dihydrazone product.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhiming Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518055, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
11
|
Meng T, Hou Y, Shang C, Zhang J, Zhang B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000266. [PMID: 32986279 DOI: 10.1002/ardp.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the major and most dangerous pathogens in humans, is a causative agent of severe pandemic of mainly skin and soft tissue and occasionally fatal infections. Therefore, it is imperative to develop potent and novel anti-MRSA agents. Indole derivatives could act against diverse enzymes and receptors in bacteria, occupying a salient place in the development of novel antibacterial agents. Dimerization and hybridization are common strategies to discover new drugs, and a number of indole dimers and hybrids possess potential antibacterial activity against a panel of clinically important pathogens including MRSA. Accordingly, indole dimers and hybrids are privileged scaffolds for the discovery of novel anti-MRSA agents. This review outlines the recent development of indole dimers and hybrids with a potential activity against MRSA, covering articles published between 2010 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Jing Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Bo Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
12
|
Russell CC, Stevens A, Young KA, Baker JR, McCluskey SN, Khazandi M, Pi H, Ogunniyi A, Page SW, Trott DJ, McCluskey A. Discovery of 4,6-bis(2-(( E)-benzylidene)hydrazinyl)pyrimidin-2-Amine with Antibiotic Activity. ChemistryOpen 2019; 8:896-907. [PMID: 31312589 PMCID: PMC6610448 DOI: 10.1002/open.201800241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Robenidine (E)-N'-((E)-1-(4-chlorophenyl)ethylidene)-2-(1-(4-chlorophenyl)ethylidene)hydrazine-1-carboximidhydrazide displays methicillin-resistant Staphyoccoccus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) MICs of 2 μg mL-1. Herein we describe the structure-activity relationship development of a novel series of guanidine to 2-aminopyrimidine isosteres that ameliorate the low levels of mammalian cytotoxicity in the lead compound while retaining good antibiotic activity. Removal of the 2-NH2 pyrimidine moiety renders these analogues inactive. Introduction of a central 2-NH2 triazine moiety saw a 10-fold activity reduction. Phenyl to cyclohexyl isosteres were inactive. The 4-BrPh and 4-CH3Ph with MIC values of 2 and 4 μg mL-1, against MRSA and VRE respectively, are promising candidates for future development.
Collapse
Affiliation(s)
- Cecilia C. Russell
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Andrew Stevens
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Kelly A. Young
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Jennifer R. Baker
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Siobhann N. McCluskey
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Abiodun Ogunniyi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| |
Collapse
|