1
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
2
|
Yıldırım A. Sustainable tandem acylation/Diels-Alder reaction toward versatile tricyclic epoxyisoindole-7-carboxylic acids in renewable green solvents. Beilstein J Org Chem 2024; 20:1308-1319. [PMID: 38887569 PMCID: PMC11181201 DOI: 10.3762/bjoc.20.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Tandem Diels-Alder reactions are often used for the straightforward formation of complex natural compounds and the fused polycyclic systems contained in their precursors. In the second step of this reaction, regio- and stereochemically controlled intramolecular cyclization leads to the formation of versatile nitrogen-containing tricyclic systems. However, these useful organic transformations are usually carried out in highly toxic organic solvents such as benzene, toluene, chloroform, etc. Despite recent efforts by 'green chemists', synthetic chemists still use these traditional toxic organic solvents in many of their reactions, even though safer alternatives are available. However, in addition to the harmful effects of these petrochemical solvents on the environment, the prediction that their resources will run out in the near future has led 'green chemists' to explore solvents that can be derived from renewable resources and used effectively in various organic transformations. In this context, we have shown for the first time that the 100% atom-economical tandem Diels-Alder reaction between aminofuranes and maleic anhydride can be carried out successfully in vegetable oils and waxes. The reaction was successfully carried out in sunflower seed oil, olive oil, oleic acid and lauryl myristate under mild reaction conditions. A series of epoxyisoindole-7-carboxylic acid and bisepoxyisoindole-7-carboxylic acids were obtained in good yields after a practical isolation procedure. The results obtained in this study demonstrate the potential of vegetable oils and their renewable materials to provide a reaction medium that is more sustainable than conventional organic solvents in cascade Diels-Alder reactions and can be used repeatedly without significant degradation. These materials also allow the reaction to be completed in less time, with less energy consumption and higher yields.
Collapse
Affiliation(s)
- Ayhan Yıldırım
- Department of Chemistry, Bursa Uludağ University, Bursa 16059, Turkey
| |
Collapse
|
3
|
O'Brien NS, Gilbert J, McCluskey A, Sakoff JA. 2,3-Dihydroquinazolin-4(1 H)-ones and quinazolin-4(3 H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med Chem 2024; 15:1686-1708. [PMID: 38784470 PMCID: PMC11110758 DOI: 10.1039/d3md00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-μM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 μM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).
Collapse
Affiliation(s)
- Nicholas S O'Brien
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| |
Collapse
|
4
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
5
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives. Bioorg Med Chem 2021; 32:116012. [PMID: 33454654 DOI: 10.1016/j.bmc.2021.116012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Cantharidin is a potent natural protein phosphatase monoterpene anhydride inhibitor secreted by several species of blister beetle, with its demethylated anhydride analogue, (S)-palasonin, occurring as a constituent of the higher plant Butea frondosa. Cantharidin shows both potent protein phosphatase inhibitory and cancer cell cytotoxic activities, but possible preclinical development of this anhydride has been limited thus far by its toxicity. Thus, several synthetic derivatives of cantharidin have been prepared, of which some compounds exhibit improved antitumor potential and may have use as lead compounds. In the present review, the potential antitumor activity, structure-activity relationships, and development of cantharidin-based anticancer drug conjugates are summarized, with protein phosphatase-related and other types of mechanisms of action discussed. Protein phosphatases play a key role in the tumor microenvironment, and thus described herein is also the potential for developing new tumor microenvironment-targeted cancer chemotherapeutic agents, based on cantharidin and its naturally occurring analogues and synthetic derivatives.
Collapse
|
7
|
Norcantharidin: research advances in pharmaceutical activities and derivatives in recent years. Biomed Pharmacother 2020; 131:110755. [PMID: 33152920 DOI: 10.1016/j.biopha.2020.110755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cantharidin (CTD) is the main bioactive component of Cantharides, which is called Banmao in Traditional Chinese Medicine (TCM). Norcantharidin (NCTD) is a structural modifier of CTD. To compare with CTD, NCTD has lighter side effects and stronger bioactivity in anti-cancer through inhibiting cell proliferation, causing apoptosis and autophagy, overwhelming migration and metastasis, affecting immunity as well as lymphangiogenesis. Examples of these effects include suppressing Protein Phosphatase 2A and modulating Wnt/beta catenin signal, with Caspase family proteins, AMPK pathway and c-Met/EGFR pathway involving respectively. Moreover, NCTD has the effects of immune enhancement, anti-platelet aggregation and inhibition of renal interstitial fibrosis with distinct signaling pathways. The immunological effects induced by NCTD are related to the regulation of macrophage polarization and LPS-mediated immune response. The antiplatelet activity that NCTD induced is relevant to the inhibition of platelet signaling and the downregulation of α2 integrin. Furthermore, some of novel derivatives designed and synthesized artificially show stronger biological activities (e.g., anticancer effect, enzyme inhibition effect, antioxidant effect) and lower toxicity than NCTD itself. Plenty of literatures have reported various pharmacological effects of NCTD, particularly the anticancer effect, which has been widely concerned in clinical application and laboratory research. In this review, the pharmaceutical activities and derivatives of NCTD are discussed, which can be reference for further study.
Collapse
|
8
|
O'Brien NS, McCluskey A. A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Aust J Chem 2020. [DOI: 10.1071/ch20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1% SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99%. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80%) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.
Collapse
|