1
|
Wang K, Xu Y, Chen Z, Li H, Hu R, Qu J, Lu Y, Liu L. NIR-II light-activated two-photon squaric acid dye with Type I photodynamics for antitumor therapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5089-5100. [PMID: 39634301 PMCID: PMC11501322 DOI: 10.1515/nanoph-2022-0482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) for hypoxic tumors has attracted wide attention owing to its noninvasiveness, easy maneuverability, and instantaneity. However, hypoxia in tumors and penetration depth of conventional ultraviolet light has greatly weakened its performance. To solve these problems, under NIR-II light irradiation, squaric acid nanoparticles (SQ NPs) with superior reactive oxygen, especially, hydroxyl radicals (•OH) production performance were first utilized for hypoxic tumor therapy. SQ NPs with intense light capture capability, intense NIR emission, and excellent photobleaching resistance show continuous •OH generation capabilities under NIR-II laser excitation. Through the superior PDT performance, the growth of hypoxic tumors was effectively inhibited, and the survival rate of mice was improved. This work highlights the application of NIR-II photoexcitation in deep tissue type I photodynamic therapy of hypoxic tumors, which will facilitate the development of hypoxic tumor PDT in deep depth.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Yunjian Xu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Zhenjiang Chen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Huixian Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Yuan Lu
- Department of Dermatology, Shenzhen Nanshan People’s Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, and Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| |
Collapse
|
2
|
Nitric oxide release activated near-Infrared photothermal agent for synergistic tumor treatment. Biomaterials 2021; 276:121017. [PMID: 34280826 DOI: 10.1016/j.biomaterials.2021.121017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Activatable phototherapeutic agents (PTA) in one system with synergistic gas therapy (GT) and photothermal therapy (PTT) hold great promise for highly efficient tumor treatments. In this study, an activatable multifunctional platform with photothermal conversion "turn on" features via nitric oxide (NO) release for synergistic GT and PTT was rationally designed using an aryl N-nitrosamine (NO-donating unit) functionalized aza-BODIPY framework (S-NO). As expected, after NO release from S-NO, the product (Red-S) showed obviously enhanced heat production performance under a longer excited wavelength via improved near-infrared light absorption and decreased fluorescence emission. Furthermore, water-soluble and biocompatible S-NO nanoparticles (S-NO NPs) with negligible dark cytotoxicity successfully suppressed tumor growth and enhanced the survival rate of mice via synergistic GT and PTT under the guidance of multimode imaging. The study offered rational guidance to design better platforms for synergistic tumor treatments and validated that S-NO NPs can act as potential PTAs in biological applications.
Collapse
|
3
|
Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. J Nanobiotechnology 2021; 19:37. [PMID: 33541369 PMCID: PMC7863535 DOI: 10.1186/s12951-021-00782-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim to develop a highly stable near-infrared (NIR) photoinduced tumor therapy agent stems from its considerable potential for biological application. Due to its long wavelength, biological imaging exhibits a high signal-to-background ratio, deep tissue penetration and maximum permissible light power, which can minimize damage to an organism during photoinduced tumor therapy. RESULTS A class of stable NIR-II fluorophores (NIR998, NIR1028, NIR980, NIR1030, and NIR1028-S) based on aza-boron-dipyrromethene (aza-BODIPY) dyes with donor-acceptor-donor structures have been rationally designed and synthesized by harnessing the steric relaxation effect and intramolecular photoinduced electron transfer (IPET). These fluorophores exhibit an intense range of NIR-II emission, large Stokes shift (≥ 100 nm), excellent photothermal conversion performance, and superior stability against photobleaching. Among the NIR-II fluorophores, NIR998 possesses better NIR-II emission and photothermal conversion performance. NIR998 nanoparticles (NIR998 NPs) can be encapsulated by liposomes. NIR998 NPs show superior stability in the presence of light, heat, and reactive oxygen nitrogen species than that of indocyanine green NPs, as well as a higher photothermal conversion ability (η = 50.5%) compared to other photothermal agents. Finally, under the guidance of photothermal imaging, NIR998 NPs have been proven to effectively eliminate tumors via their excellent photothermal conversion performance while presenting negligible cytotoxicity. CONCLUSIONS Utilizing IPET and the steric relaxation effect can effectively induce NIR-II emission of aza-BODIPY dyes. Stable NIR998 NPs have excellent photothermal conversion performance and negligible dark cytotoxicity, so they have the potential to act as photothermal agents in biological applications.
Collapse
Affiliation(s)
- Yunjian Xu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Zhenjiang Chen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shaoqiang Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| |
Collapse
|
4
|
Yang ZS, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang BW, Gao S, Sessler JL, Zhang JL. Rational design of an "all-in-one" phototheranostic. Chem Sci 2020; 11:8204-8213. [PMID: 34123091 PMCID: PMC8163340 DOI: 10.1039/d0sc03368e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as "all-in-one" phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an "all-in-one" phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.
Collapse
Affiliation(s)
- Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street-A5300 Austin TX 78712-1224 USA
| | - Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital Beijing 100034 P. R. China
| | - Ye Xia
- College of Chemistry, Beijing Normal University , Beijing 100875 P. R. China
| | - Yan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital Beijing 100034 P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University , Beijing 100875 P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street-A5300 Austin TX 78712-1224 USA
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| |
Collapse
|
5
|
Li G, Hu W, Zhao M, Zhao W, Li F, Liu S, Huang W, Zhao Q. Rational design of near-infrared platinum(ii)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. J Mater Chem B 2020; 8:7356-7364. [DOI: 10.1039/d0tb01107j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a novel near-infrared Pt-acetylide conjugated polymer CP3 with highly efficient photoconversion behaviors for synergistic cancer phototherapy.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
6
|
David S, Pilet G, Berginc G, Andraud C, Maury O. Poly-halogenated aza-bodipy dyes with improved solubility as a versatile synthetic platform for the design of photonic materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj02631j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimization of the solubility in organic solvents of halogenated aza-dipyrromethenes was achieved by substitution of the upper phenyl moieties by branched long alkoxy chains (1f) or by using an OMe–OHex–OMe pattern (1h).
Collapse
Affiliation(s)
- Sylvain David
- Univ. Lyon
- ENS Lyon, CNRS, Université Lyon 1
- Laboratoire de Chimie
- UMR 5182, 46 Allée d’Italie
- 69364 Lyon
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces (LMI) UMR 5615 CNRS
- Université Claude Bernard Lyon 1
- Avenue du 11 novembre 1918
- 69622 Villeurbanne cedex
- France
| | - Gérard Berginc
- Thales LAS France, 2 Avenue Gay Lussac
- 78990 Élancourt
- France
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon, CNRS, Université Lyon 1
- Laboratoire de Chimie
- UMR 5182, 46 Allée d’Italie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon, CNRS, Université Lyon 1
- Laboratoire de Chimie
- UMR 5182, 46 Allée d’Italie
- 69364 Lyon
| |
Collapse
|