1
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Boonyalai N, Peerapongpaisarn D, Thamnurak C, Oransathid W, Wongpatcharamongkol N, Oransathid W, Lurchachaiwong W, Griesenbeck JS, Waters NC, Demons ST, Ruamsap N, Vesely BA. Screening of the Pandemic Response Box library identified promising compound candidate drug combinations against extensively drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:21709. [PMID: 39289446 PMCID: PMC11408719 DOI: 10.1038/s41598-024-72603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Dutsadee Peerapongpaisarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilawan Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nantanat Wongpatcharamongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wirote Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Woradee Lurchachaiwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Division of Global Health Protection, Thailand MoPH-US CDC Collaboration, Nonthaburi, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Samandra T Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
3
|
Wang M, Yang F, Luo H, Jiang Y, Zhuang K, Tan L. Photocuring and Gelatin-Based Antibacterial Hydrogel for Skin Care. Biomacromolecules 2023; 24:4218-4228. [PMID: 37579244 DOI: 10.1021/acs.biomac.3c00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The development of moisturizing, antibacterial, and biocompatible multifunctional hydrogels is essential to protect skin and promote skin defects recovery. Gelatin has admired potential to be applied for skin care as a hydrogel in virtue of its hydrophilic biocompatible and biodegradable properties. In this study, triclosan-grafted gelatin and photo-cross-linkable methacrylated gelatin were synthesized and then combined to construct the semi-interpenetrating network and antibacterial hydrogels with the aid of a visible blue light. The antimicrobial test demonstrated that the resulting hydrogel obtained excellent inactivation capacity against E. coli, S. aureus, T. rubrum, and C. albicans with sterilizing rates of 99.998%, 99.998%, 99.19%, and 99.64%, respectively. In addition, the cytotoxicity, hemolysis, skin irritation, and rat skin wound healing experiments proved the good biocompatibility of the hydrogel. Therefore, this investigation sheds light on the development of multifunctional hydrogels in skin care.
Collapse
Affiliation(s)
- Min Wang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hao Luo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Hasan S, Kayed K, Ghemrawi R, Bataineh NA, Mahgoub RE, Audeh R, Aldulaymi R, Atatreh N, Ghattas MA. Molecular Modelling Study and Antibacterial Evaluation of Diphenylmethane Derivatives as Potential FabI Inhibitors. Molecules 2023; 28:molecules28073000. [PMID: 37049763 PMCID: PMC10095751 DOI: 10.3390/molecules28073000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The need for new antibiotics has become a major worldwide challenge as bacterial strains keep developing resistance to the existing drugs at an alarming rate. Enoyl-acyl carrier protein reductases (FabI) play a crucial role in lipids and fatty acid biosynthesis, which are essential for the integrity of the bacterial cell membrane. Our study aimed to discover small FabI inhibitors in continuation to our previously found hit MN02. The process was initially started by conducting a similarity search to the NCI ligand database using MN02 as a query. Accordingly, ten compounds were chosen for the computational assessment and antimicrobial testing. Most of the compounds showed an antibacterial activity against Gram-positive strains, while RK10 exhibited broad-spectrum activity against both Gram-positive and Gram-negative bacteria. All tested compounds were then docked into the saFabI active site followed by 100 ns MD simulations (Molecular Dynamics) and MM-GBSA (Molecular Mechanics with Generalised Born and Surface Area Solvation) calculations in order to understand their fitting and estimate their binding energies. Interestingly, and in line with the experimental data, RK10 was able to exhibit the best fitting with the target catalytic pocket. To sum up, RK10 is a small compound with leadlike characteristics that can indeed act as a promising candidate for the future development of broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Shaima Hasan
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Kawthar Kayed
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Nezar Al Bataineh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Radwa E. Mahgoub
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Rola Audeh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Raghad Aldulaymi
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- Correspondence: ; Tel.: +971-26133275
| |
Collapse
|
5
|
Maltarollo VG, Shevchenko E, Lima IDDM, Cino EA, Ferreira GM, Poso A, Kronenberger T. Do Go Chasing Waterfalls: Enoyl Reductase (FabI) in Complex with Inhibitors Stabilizes the Tetrameric Structure and Opens Water Channels. J Chem Inf Model 2022; 62:5746-5761. [PMID: 36343333 DOI: 10.1021/acs.jcim.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.
Collapse
Affiliation(s)
- Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Igor Daniel de Miranda Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
6
|
Tavares MT, de Almeida LC, Kronenberger T, Monteiro Ferreira G, Fujii de Divitiis T, Franco Zannini Junqueira Toledo M, Mariko Aymoto Hassimotto N, Agostinho Machado-Neto J, Veras Costa-Lotufo L, Parise-Filho R. Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. Bioorg Med Chem 2021; 35:116085. [PMID: 33668008 DOI: 10.1016/j.bmc.2021.116085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.
Collapse
Affiliation(s)
- Maurício Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology Applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thainá Fujii de Divitiis
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Neuza Mariko Aymoto Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Letícia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Zheng Y, Dong H, Bai X, Cui H, Li MJ, Wu HY, Zhang K. Effects of lysine 2-hydroxyisobutyrylation on bacterial FabI activity and resistance to triclosan. Biochimie 2021; 182:197-205. [PMID: 33485933 DOI: 10.1016/j.biochi.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel protein posttranslational modification conserved in eukaryotes and prokaryotes. However, the biological significance of Khib remains largely unknown. Here, through screening the proteome-wide Khib modification sites in bacteria using a bioinformatic method, we identified a potential Khib site (K201hib) targeted by de-2-hyroxyisobutyrylase CobB at the substrate-binding site of FabI, an enoyl-acyl carry protein reductase (EnvM or FabI) in fatty acid biosynthesis pathway. First, we confirmed that the previously identified de-2-hyroxyisobutyrylase CobB can remove Khib of FabI in an in vitro experiment. To investigate the biological effects of the Khib on FabI's activity, amino acid substitutes were introduced to the modification sites of the protein of E. coli origin to mimic modified/unmodified status. We found that the mutant mimicking K201hib reduced FabI activity with decreased Michaelis constant (Km) and catalytic turnover number (kcat), while the mutant mimicking the unmodified form and the recombinant wild-type protein treated with CobB exhibited increased activity. However, the dissociation constant (KD) between FabI and NADH was not affected by the mutation mimicking the modification, suggesting that K201hib didn't alter the binding between NADH and FabI. We also found that K201hib tended to increase the resistance of E. coli to triclosan (TCL), a widely-used antibiotics targeting FabI. Taken together, this study identified the regulatory role of Khib on FabI activity and pointed to a novel mechanism related to antibiotic resistance.
Collapse
Affiliation(s)
- Yiqiang Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Cui
- Department of Pharmacology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Pharmacology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
8
|
Yogiara, Mordukhova EA, Kim D, Kim WG, Hwang JK, Pan JG. The food-grade antimicrobial xanthorrhizol targets the enoyl-ACP reductase (FabI) in Escherichia coli. Bioorg Med Chem Lett 2020; 30:127651. [PMID: 33130290 DOI: 10.1016/j.bmcl.2020.127651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Xanthorrhizol, isolated from the Indonesian Java turmeric Curcuma xanthorrhiza, displays broad-spectrum antibacterial activity. We report herein the evidence that mechanism of action of xanthorrhizol may involve FabI, an enoyl-(ACP) reductase, inhibition. The predicted Y156V substitution in the FabI enzyme promoted xanthorrhizol resistance, while the G93V mutation originally known for triclosan resistance was not effective against xanthorrhizol. Two other mutations, F203L and F203V, conferred FabI enzyme resistance to both xanthorrhizol and triclosan. These results showed that xanthorrhizol is a food-grade antimicrobial compound targeting FabI but with a different mode of binding from triclosan.
Collapse
Affiliation(s)
- Yogiara
- Department of Biotechnology, Yonsei University, 50-Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia.
| | - Elena A Mordukhova
- GenoFocus Inc., 65 Techno 1-ro, Gwanpyeong-dong, Yuseong-gu, Daejeon 34014, Republic of Korea.
| | - Dooil Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 34141, Republic of Korea.
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 34141, Republic of Korea.
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50-Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jae-Gu Pan
- GenoFocus Inc., 65 Techno 1-ro, Gwanpyeong-dong, Yuseong-gu, Daejeon 34014, Republic of Korea; Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Kronenberger T, Ferreira GM, de Souza ADF, da Silva Santos S, Poso A, Ribeiro JA, Tavares MT, Pavan FR, Trossini GHG, Dias MVB, Parise-Filho R. Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors. Bioorg Med Chem 2020; 28:115600. [DOI: 10.1016/j.bmc.2020.115600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|