1
|
Xie B, Lin G, Wang Z, Xu D, Chen J, Lin S. Improved lymph node detection in minimally invasive radical surgery for colorectal cancer using nanocarbon tracer. Discov Oncol 2024; 15:720. [PMID: 39609297 PMCID: PMC11604857 DOI: 10.1007/s12672-024-01582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
To investigate the influencing factors of lymph node detection after minimally invasive radical surgery in patients with colorectal cancer (CRC) and the application value of carbon nanoparticle tracing. A total of 120 patients with CRC who underwent minimally invasive radical surgery were included. They were divided into groups according to whether they were grouped by carbon nano-tracers, and the baseline data were matched by propensity score method. Univariate and multivariate methods were used to evaluate lymph nodes and positive lymph nodes after minimally invasive radical surgery. The number of detected independent factors. After propensity score matching, there were 37 patients in the tracer group and the non-tracer group; there was no significant difference in baseline data between the two groups; the number of positive lymph nodes detected in the tracer group was significantly higher than that in the non-tracer group. The results of univariate analysis showed that gender, lesion location, maximum tumor diameter, and whether to perform nanocarbon tracing were all related to the number of lymph nodes detected after minimally invasive radical surgery. Nanocarbon tracing was an independent influencing factor for the number of lymph nodes detected after minimally invasive radical surgery. Pathological type, T stage, histopathological grade, nerve invasion, and whether or not with cancer nodules were all related to the number of positive lymph nodes detected after minimally invasive radical surgery; multivariate analysis showed that T stage, pathological Histological grade, vascular invasion, and cancer nodules were all independent influencing factors for the number of positive lymph nodes detected after minimally invasive radical surgery. The number of lymph nodes detected in patients with CRC after minimally invasive radical surgery is closely related to the location of the lesion and whether carbon nanoparticle tracing is performed; those with T2-4 stage, histological grade 3-4, combined with vascular invasion and cancer nodules are more likely to Positive lymph nodes were detected.
Collapse
Affiliation(s)
- Bingkai Xie
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, China
| | - Guihe Lin
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, China
| | - Zhijian Wang
- Department of Colorectal Surgery, People's Hospital, Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350103, Fujian Province, China
| | - Dongbo Xu
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, China
| | - Jianxun Chen
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, China
| | - Shuangming Lin
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, China.
| |
Collapse
|
2
|
Shao F, Zhou Q, Yu F, Pan L, Li L. Clinical value of nano-carbon lymphatic tracer for regional lymph node dissections of rectal cancer after neoadjuvant chemoradiotherapy. J Appl Clin Med Phys 2024; 25:e14406. [PMID: 38820538 PMCID: PMC11302801 DOI: 10.1002/acm2.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVES Regional lymph node (LN) volume decreases after neoadjuvant therapy, requiring a tracer for more accurate detection. Nano-carbon tracer is a third-generation tracer with several advantages, but its use for LN detection after neoadjuvant chemoradiotherapy for middle and low rectal cancer remains unclear. Therefore, this study investigated the effects and safety of anoscope-guided subrectal injections of nano-carbon suspension in this patient population. METHODS This study retrospectively reviewed the medical records of 45 patients with middle and low rectal cancer admitted to our institution from March 2019 to March 2022. All patients received preoperative neoadjuvant chemotherapy and radiotherapy and were divided into nano-carbon injection (n = 23; anoscope-guided injections of nano-carbon suspension in the rectal submucosa 2 cm above the dentate line 24 h preoperatively) and control (n = 22; directly underwent surgery) groups. The LN detection and complication rates were compared between the groups. RESULTS The total and mean numbers of LNs and small LNs and the number of patients with > 12 LNs were significantly higher in the nano-carbon injection group than in the control group. The total number of positive LNs and LN metastasis did not differ between the groups, nor did the anastomotic leakage, bleeding, stenosis, and abscess occurrence rates. CONCLUSIONS Anoscope-guided nano-carbon lymphatic tracing increased the LN detection rate, caused less trauma, and resulted in fewer postoperative complications than the direct surgical procedure. Thus, it is an effective, safe, and practical method that may improve dissections and the postoperative pathological staging accuracy.
Collapse
Affiliation(s)
- Feng Shao
- Department of Anorectal surgeryDongyang People Hospital (affiliated Dongyang Hospital of Wenzhou Medical University)Dongyang, Zhejiang provinceChina
| | - Qi Zhou
- Department of Anorectal surgeryDongyang People Hospital (affiliated Dongyang Hospital of Wenzhou Medical University)Dongyang, Zhejiang provinceChina
| | - Fei Yu
- Department of Anorectal surgeryDongyang People Hospital (affiliated Dongyang Hospital of Wenzhou Medical University)Dongyang, Zhejiang provinceChina
| | - Lelin Pan
- The First Affilated HospitalZhejiang University School of Medicine QingchunluZhejiangChina
| | - Lijun Li
- Department of Anorectal surgeryDongyang People Hospital (affiliated Dongyang Hospital of Wenzhou Medical University)Dongyang, Zhejiang provinceChina
| |
Collapse
|
3
|
López-Martín R, Aranda-Sobrino N, De Enciso-Campos N, Sánchez EH, Castañeda-Peñalvo G, Lee SS, Binns C, Ballesteros-Yáñez I, De Toro JA, Castillo-Sarmiento CA. Toxicity and magnetometry evaluation of the uptake of core-shell maghemite-silica nanoparticles by neuroblastoma cells. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231839. [PMID: 39100165 PMCID: PMC11296074 DOI: 10.1098/rsos.231839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Nanoparticle uptake by cells is a key parameter in their performance in biomedical applications. However, the use of quantitative, non-destructive techniques to obtain the amount of nanoparticles internalized by cells is still uncommon. We have studied the cellular uptake and the toxicity of core-shell maghemite-silica magnetic nanoparticles (MNPs), with a core diameter of 9 nm and a shell thickness of 3 nm. The internalization of the nanoparticles by mouse neuroblastoma 2a cells was evaluated by sensitive and non-destructive Superconducting Quantum Interference Device (SQUID) magnetometry and corroborated by graphite furnace atomic absorption spectroscopy. We were thus able to study the toxicity of the nanoparticles for well-quantified MNP uptake in terms of nanoparticle density within the cell. No significant variation in cell viability or growth rate was detected for any tested exposure. Yet, an increase in both the amount of mitochondrial superoxide and in the lysosomal activity was detected for the highest concentration (100 μg ml-1) and incubation time (24 h), suggesting the onset of a disruption in ROS homeostasis, which may lead to an impairment in antioxidant responses. Our results validate SQUID magnetometry as a sensitive technique to quantify MNP uptake and demonstrate the non-toxic nature of these core-shell MNPs under our culture conditions.
Collapse
Affiliation(s)
- Raúl López-Martín
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Nieves Aranda-Sobrino
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
| | - Nerea De Enciso-Campos
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
| | - Elena H. Sánchez
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering, 31 Biopolis Way, #09-01, The Nanos, Singapore138669, Singapore
| | - Chris Binns
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
- BIomedicine Institute, Universidad de Castilla-La Mancha, Albacete02008, Spain
| | - Jose A. De Toro
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Carlos A. Castillo-Sarmiento
- BIomedicine Institute, Universidad de Castilla-La Mancha, Albacete02008, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo45071, Spain
| |
Collapse
|
4
|
Huang B, Jin L, Peng T, Fei Z. Colorectal Cancer Lymph Node Detection and Anastomotic Safety of Using Carbon Nano-Tracer Following Minimally Invasive Radical Surgery. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: The goal of this study is to examine the impact of rectal submucosal injection of nano-carbon suspension injection following neoadjuvant therapy for middle and low rectal cancer on lymph node identification and anastomotic safety. Methods: 45 patients with intermediate-to-low
grade rectal cancer admitted to the Ningbo Medical Center Lihuili Hospital between March 2019 and March 2022 had their medical records reviewed retrospectively. Patients in case group were injected with nanocarbon suspension under an anoscope into the rectal submucosa patients in control group
were not injected with nanocarbon suspension. The lymph node identification and anastomotic consequences were then compared. Results: There were statistically significant differences between the two groups in the average number of lymph nodes discovered in the observation group and
the percentage of patients with more than 12 lymph nodes detected. The percentage of patients with lymph node metastases did not significantly. The rates of complications such leakage, hemorrhage, stenosis, and abscesses around the anastomosis were similar in both groups. Conclusion:
Nano carbon lymph node tracking is a safe, simple, and easy-to-operate method for increasing the number of lymph nodes detected in surgical specimens of middle and low rectal cancer after neoadjuvant therapy.
Collapse
Affiliation(s)
- Bin Huang
- Department of Anorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Liangbin Jin
- Department of Anorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Tao Peng
- Department of Anorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Zhenglei Fei
- Department of Anorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| |
Collapse
|
5
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
6
|
Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022; 14:204. [PMID: 35057099 PMCID: PMC8780449 DOI: 10.3390/pharmaceutics14010204] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review's next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.
Collapse
Affiliation(s)
- María Gabriela Montiel Schneider
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Jessica Otarola
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Ekaterina Vakarelska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
7
|
Martin MJ, Spitzmaul G, Lassalle V. Novel insights and perspectives for the diagnosis and treatment of hearing loss through the implementation of magnetic nanotheranostics. ChemMedChem 2022; 17:e202100685. [PMID: 34978134 DOI: 10.1002/cmdc.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/06/2022]
Abstract
Hearing loss (HL) is a sensory disability that affects 5% of the world's population. HL predominantly involves damage and death to the cochlear cells. Currently, there is no cure or specific medications for HL. Furthermore, the arrival of therapeutic molecules to the inner ear represents a challenge due to the limited blood supply to the sensory cells and the poor penetration of the blood-cochlear barrier. Superparamagnetic iron oxide nanoparticles (SPIONs) perfectly coordinate with the requirements for controlled drug delivery along with magnetic resonance imaging (MRI) diagnostic and monitoring capabilities. Besides, they are suitable tools to be applied to HL, expecting to be more effective and non-invasive. So far, the published literature only refers to some preclinical studies of SPIONs for HL management. This contribution aims to provide an integrated view of the best options and strategies that can be considered for future research punctually in the field of magnetic nanotechnology applied to HL.
Collapse
Affiliation(s)
- Maria Julia Martin
- INQUISUR: Instituto de Quimica del Sur, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, 8000, Bahía Blanca, ARGENTINA
| | - Guillermo Spitzmaul
- Universidad Nacional del Sur Departamento de Biología Bioquímica y Farmacia: Universidad Nacional del Sur Departamento de Biologia Bioquimica y Farmacia, Departamento de Biología, Bioquímica Y farmacia, Camino La Carrindanga Km 7, 8000, Bahía Blanca, ARGENTINA
| | - Verónica Lassalle
- INQUISUR: Instituto de Quimica del Sur, Química, Av Alem 1253, 8000, Bahía Blanca, ARGENTINA
| |
Collapse
|
8
|
Mondal S, Ghosh R, Adhikari A, Pal U, Mukherjee D, Biswas P, Darbar S, Singh S, Bose S, Saha-Dasgupta T, Pal SK. In vitro and Microbiological Assay of Functionalized Hybrid Nanomaterials To Validate Their Efficacy in Nanotheranostics: A Combined Spectroscopic and Computational Study. ChemMedChem 2021; 16:3739-3749. [PMID: 34550644 DOI: 10.1002/cmdc.202100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Indexed: 01/05/2023]
Abstract
Functionalized nanoparticles reveal new frontiers in therapeutics and diagnostics, simultaneously referred to as theranostics. Functionalization of an inorganic nanoparticle (NP) with an organic ligand determines the interaction of the functionalized NPs with various cellular components, leading to the desired therapeutic effect, while diminishing adverse side effects. Apart from the therapeutic effect of the nanoparticles, other physical properties of the organic-inorganic complex (nanohybrid) including fluorescence, X-ray or MRI contrast offer diagnosis of the anomalous target cell. In this study we functionalized Mn3 O4 NPs with organic citrate (C-Mn3 O4 ) and folic acid (FA-Mn3 O4 ) ligands and investigated their antimicrobial activities using Staphylococcus hominis as a model bacteria, which can be remediated through their membrane rupture. While high-resolution transmission microscopy (HR-TEM), XRD, DLS, absorbance and fluorescence spectroscopy were used for structural characterisation of the functionalised NPs, zeta potential measurements and temperature-dependent reactive oxygen speices (ROS) generation reveal their drug action. We used high-end density functional theory (DFT) calculations to rationalise the specificity of the drug action of the NPs. Picosecond-resolved FRET studies confirm the enhanced affinity of FA-Mn3 O4 to the bacteria relative to C-Mn3 O4 , leading to enhanced antimicrobial activity. We have shown that the functionalised nanoparticles offer significant X-ray contrast in in-vitro studies, indicating the FA-Mn3 O4 NPs to be a potential theranostic agent against bacterial infection.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Ria Ghosh
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.,Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.,Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Pritam Biswas
- Department of Microbiology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Soumendra Darbar
- Research & Development Division, Dey's Medical Stores (Mfg.) Ltd., 62, Bondel Road, Ballygunge, Kolkata, 700019, India
| | - Soumendra Singh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Surajit Bose
- Department of Dentistry, Bharat Sevashram Sangha Hospital, Diamond Harbour Road, Kolkata, 700104, India.,Department of Oraland Maxillofacial Pathology, KSDJ Dental College and Hospital, 6 Ram Gopal Ghosh Road, Cossipore, Kolkata, 700002, India
| | - Tanusri Saha-Dasgupta
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.,Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.,Technical Research Centre, S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
9
|
Martín MJ, Azcona P, Lassalle V, Gentili C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur J Pharm Sci 2020; 158:105681. [PMID: 33347979 DOI: 10.1016/j.ejps.2020.105681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer death with a high probability of treatment failure. Doxorubicin (DOXO) is an efficient antitumor drug; however, most CRC cells show resistance to its effects. Magnetic nanoparticles (MNPs) are potential cancer management tools that can serve as diagnostic agents and also can optimize and personalize treatments. This work aims to evaluate the aptitude of magnetic nanotheranostics composed of magnetite (Fe3O4) nanoparticles coated with folic acid intended to the sustained release of DOXO. The administration of DOXO by means of these MNPs resulted in the enhancement of cell death respect to the free drug administration. Chromatin compaction and cytoplasmic protrusions were observed. Mitochondrial transmembrane potential disruption and increased PARP protein cleavage confirmed apoptosis. The nanosystem was also tested as a vectoring tool by exposing it to the stimuli of a static magnetic field in vitro. CRC-related magnetic nanotechnology still remains in pre-clinical trials. In this context, this contribution expands the knowledge of the behavior of MNPs in contact with in vitro models and proposes the nanodevices studied here as potential theranostic agents for the monitoring of the progress of CRC and the evolution of its treatment.
Collapse
Affiliation(s)
- María Julia Martín
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina.; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Pamela Azcona
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina..
| |
Collapse
|