1
|
Chen KY, Wang HQ, Yuan Y, Mou SB, Xiang Z. Chemoenzymatic Synthesis of Cylindrocyclophanes A and F and Merocyclophanes A and D. Angew Chem Int Ed Engl 2023; 62:e202307602. [PMID: 37771066 DOI: 10.1002/anie.202307602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Incorporating enzymatic reactions into natural product synthesis can significantly improve synthetic efficiency and selectivity. In contrast to the increasing applications of biocatalytic functional-group interconversions, the use of enzymatic C-C bond formation reactions in natural product synthesis is underexplored. Herein, we report a concise and efficient approach for the synthesis of [7.7]paracyclophane natural products, a family of polyketides with diverse biological activities. By using enzymatic Friedel-Crafts alkylation, cylindrocyclophanes A and F and merocyclophanes A and D were synthesized in six to eight steps in the longest linear sequence. This study demonstrates the power of combining enzymatic reactions with contemporary synthetic methodologies and provides opportunities for the structure-activity relationship studies of [7.7]paracyclophane natural products.
Collapse
Affiliation(s)
- Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Ye Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, P. R. China
| |
Collapse
|
2
|
Gilbert MM, Trenerry MJ, Longley VR, Castro AJ, Berry JF, Weix DJ. Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones. ACS Catal 2023; 13:11277-11290. [PMID: 39386022 PMCID: PMC11463996 DOI: 10.1021/acscatal.3c02643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reactions that cleave C-C bonds and enable functionalization at both carbon sites are powerful strategic tools in synthetic chemistry. Stereodefined cyclopropyl ketones have become readily available and would be an ideal source of 3-carbon fragments, but general approaches to net C-C activation / difunctionalization are unknown. Herein we demonstrate the cross-coupling of cyclopropyl ketones with organozinc reagents and chlorotrimethylsilane to form 1,3-difunctionalized, ring-opened products. A combination of experimental and theoretical studies rule out more established mechanisms and shed light on how cooperation between the redox-active terpyridine (tpy) ligand and the nickel atom enables the C-C bond activation step. The reduced (tpy•-)NiI species activates the C-C bond via a concerted asynchronous ring-opening transition state. The resulting alkylnickel(II) intermediate can then be engaged by aryl-, alkenyl-, and alkylzinc reagents to furnish cross-coupled products. This allows quick access to products that are difficult to make by conjugate addition methods, such as β-allylated and β -benzylated enol ethers. The utility of this approach is demonstrated in the synthesis of a key (±)-taiwaniaquinol B intermediate and the total synthesis of prostaglandin D1.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Michael J. Trenerry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - John F. Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| |
Collapse
|
3
|
Freudenreich JJ, Bartlett S, Robertson NS, Kidd SL, Forrest S, Sore HF, Galloway WRJD, Welch M, Spring DR. Divergent Synthesis of Novel Cylindrocyclophanes that Inhibit Methicillin-Resistant Staphylococcus aureus (MRSA). ChemMedChem 2020; 15:1289-1293. [PMID: 32424962 PMCID: PMC7522682 DOI: 10.1002/cmdc.202000179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The cylindrocyclophanes are a family of macrocyclic natural products reported to exhibit antibacterial activity. Little is known about the structural basis of this activity due to the challenges associated with their synthesis or isolation. We hypothesised that structural modification of the cylindrocyclophane scaffold could streamline their synthesis without significant loss of activity. Herein, we report a divergent synthesis of the cylindrocyclophane core enabling access to symmetrical macrocycles by means of a catalytic, domino cross-metathesis-ring-closing metathesis cascade, followed by late-stage diversification. Phenotypic screening identified several novel inhibitors of methicillin-resistant Staphylococcus aureus. The most potent inhibitor has a unique tetrabrominated [7,7]paracyclophane core with no known counterpart in nature. Together these illustrate the potential of divergent synthesis using catalysis and unbiased screening methods in modern antibacterial discovery.
Collapse
Affiliation(s)
| | - Sean Bartlett
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Naomi S. Robertson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Sarah L. Kidd
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Suzie Forrest
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - Hannah F. Sore
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Martin Welch
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|