1
|
Rao RSP, Pinto L, Suravajhala R, Shenoy BD, Sashindran VK, Ghate SD. Azole resistance: insights from Y132 substitutions in Candida sterol 14α-demethylase utilizing molecular dynamics simulations. J Biomol Struct Dyn 2025:1-9. [PMID: 40091806 DOI: 10.1080/07391102.2025.2479847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 03/19/2025]
Abstract
Azole-resistant Candida infections are on the rise. Resistant substitutions at Y132 in sterol 14α-demethylase, the key target of azole drugs, are frequent. However, it is unclear why only some Y132 substitutions are favoured or how they exert differential effects on different azoles. Reported instances of Y132 substitutions were collected from the literature. Extensive molecular dynamics simulations of sterol 14α-demethylase bound to fluconazole or VT1161 (VT1) were performed using GROMACS, and the ligand-binding free energies were computed to quantify the effects of various Y132 substitutions on azole binding/interactions. Three azole-resistant substitutions, Y to C/F/H, were reported at residue position 132 in sterol 14α-demethylase. The Y132H was the most common substitution in C. albicans, while it was Y132F in other species. Ligand-binding free energies were -13.97 kcal/mol and -35.30 kcal/mol for fluconazole and VT1, respectively. There were differences in the ligand-binding free energies after substitutions compared to the wild type protein. Y132F and Y132H were the most frequent substitutions in Candida sterol 14α-demethylase. Far higher binding free energy of fluconazole in comparison with VT1 might partly explain its susceptibility to azole-resistant substitutions. The results give key insights into azole resistance, and antifungal drug discovery and optimization.
Collapse
Affiliation(s)
- R Shyama Prasad Rao
- Center for Bioinformatics, NITTE deemed to be University, Mangaluru, India
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE deemed to be University, Mangaluru, India
| | - Larina Pinto
- Center for Bioinformatics, NITTE deemed to be University, Mangaluru, India
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham Amrita School of Engineering Amritapuri, Kollam, India
| | | | - V K Sashindran
- Department of General Medicine, KS Hegde Medical Academy (KSHEMA), NITTE deemed to be University, Mangaluru, India
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE deemed to be University, Mangaluru, India
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE deemed to be University, Mangaluru, India
| |
Collapse
|
2
|
Alsulaimany M, Binjubair FA, Tatar E, Kelly DE, Kelly SL, Warrilow AG, Keniya MV, Monk BC, Parker JE, Simons C. Exploring medium and long arm extensions of 1,2,4-triazole derivatives as Candida albicans 14α-demethylase (CYP51) inhibitors. RSC Med Chem 2025:d4md00863d. [PMID: 40135142 PMCID: PMC11931565 DOI: 10.1039/d4md00863d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Fungal infections have been described as a silent crisis affecting more than one billion people each year. At least 150 million of these cases involve severe and life threatening invasive fungal infections, accounting for approximately 1.7 million deaths annually. 1,2,4-Trizoles such as fluconazole and posaconazole are widely used antifungal agents, but azole resistance is an increasing problem requiring further study. 1,2,4-Triazole derivatives with medium and long arm extensions designed to bind within the Candida albicans CYP51 (CaCYP51) access channel were synthesised to study their inhibition of CaCYP51 (IC50, MIC) and binding affinity (K d). A long arm extension using the amide linker was found to be most effective (e.g.13), giving an antifungal profile vs. wild-type and resistant model fungal strains comparable with posaconazole.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Faizah A Binjubair
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University 34668 Istanbul Turkey
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University Swansea SA2 8PP UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University Swansea SA2 8PP UK
| | - Andrew G Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University Swansea SA2 8PP UK
| | - Mikhail V Keniya
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago Dunedin 9016 New Zealand
| | - Brian C Monk
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago Dunedin 9016 New Zealand
| | - Josie E Parker
- School of Biosciences, Cardiff University Museum Avenue Cardiff CF10 3AX UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| |
Collapse
|
3
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Liu Y, Wang Q, Yu S, Liu M, Han J, Sun B. Construction and Evaluation of Novel Dual-function Antifungal Inhibitors and Covalent Organic Framework Carriers Based on the Infection Microenvironment. J Med Chem 2023; 66:13838-13857. [PMID: 37752076 DOI: 10.1021/acs.jmedchem.3c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this study, PD-L1 and CYP51 were selected as key dual-target enzymes, which play an important role in the process of fungal proliferation and immune suppression. A series of novel bifonazole dual-target compounds were designed through the method of fragment combination. Their chemical structure was synthesized, characterized, and evaluated. Among them, the compounds (10c-1, 14a-2, 17c-2) exhibited excellent antifungal and antidrug-resistant fungal activity in vitro. In particular, the preferred compound 14a-2 with high-efficiency dual-target inhibitor ability could block the fungal proliferation and activate the organism's immune efficacy. Moreover, the corresponding covalent organic framework carrier was also successfully constructed to improve its bioavailability. This significantly accelerated the body's recovery process from fungal infection in vivo. In summary, this study expanded the scientific frontier of antifungal drugs and provided a feasible candidate pathway for clinical treatment of fungal infections.
Collapse
Affiliation(s)
- Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
5
|
Sun B, Liu W, Wang Q, Liu Y, Yu S, Liu M, Han J. Design, Synthesis, and Activity Evaluation of Novel Dual-Target Inhibitors with Antifungal and Immunoregulatory Properties. J Med Chem 2023; 66:13007-13027. [PMID: 37705322 DOI: 10.1021/acs.jmedchem.3c00942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Dual-target (CYP51/PD-L1) plays an important role in the process of fungal proliferation and immune suppression. A series of novel quinazoline compounds with dual-target inhibition function was constructed using the skeleton growth method, and their structures were synthesized, characterized, and evaluated. Among them, the perfected compounds (L11, L20, L21) were selected for further study, which exhibited remarkable biological activity against different fungal strains (MIC50, 0.25-2.0 μg/mL) in vitro. On the one hand, these compounds inhibited CYP51 activity, induced ROS aggregation, and mitochondrial damage; this ultimately caused fungal lysis and death. On the other hand, they also effectively activated the body's immune ability by blocking the interaction between PD-L1 and PD-1, slowed down the inflammatory reaction, and accelerated the recovery process of fungal infections.
Collapse
Affiliation(s)
- Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
6
|
Alshabani LA, Kumar A, Willcocks SJ, Srithiran G, Bhakta S, Estrada DF, Simons C. Synthesis, biological evaluation and computational studies of pyrazole derivatives as Mycobacterium tuberculosis CYP121A1 inhibitors. RSC Med Chem 2022; 13:1350-1360. [PMID: 36426236 PMCID: PMC9667784 DOI: 10.1039/d2md00155a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 07/25/2023] Open
Abstract
A series of imidazole and triazole diarylpyrazole derivatives were prepared using an efficient 5-step synthetic scheme and evaluated for binding affinity with Mycobacterium tuberculosis (Mtb) CYP121A1 and antimycobacterial activity against Mtb H37Rv. Antimycobacterial susceptibility was measured using the spot-culture growth inhibition assay (SPOTi): the imidazoles displayed minimum inhibitory concentration (MIC90) in the range of 3.95-12.03 μg mL-1 (10.07-33.19 μM) with 11f the most active, while the triazoles displayed MIC90 in the range of 4.35-25.63 μg mL-1 (11.88-70.53 μM) with 12b the most active. Assessment of binding affinity using UV-vis spectroscopy showed that for the imidazole series, the propyloxy (11f) and isopropyloxy (11h) derivatives of the 4-chloroaryl pyrazoles displayed Mtb CYP121A1 type II binding affinity with K d 11.73 and 17.72 μM respectively compared with the natural substrate cYY (K d 12.28 μM), while in the triazole series, only the methoxy substitution with the 4-chloroaryl pyrazole (12b) showed good type II Mtb CYP121A1 binding affinity (K d 5.13 μM). Protein-detected 1D 19F-NMR spectroscopy as an orthogonal strategy was used to evaluate ligand binding independent of perturbations at the haem. For imidazole and triazole compounds, perturbations were more intense than cYY indicating tighter binding and confirming that ligand coordination occurs in the substrate-binding pocket despite very modest changes in UV-vis absorbance, consistent with computational studies and the demonstrated potential anti-tuberculosis properties of these compounds.
Collapse
Affiliation(s)
- Lama A Alshabani
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo Buffalo New York-14203 USA
| | - Sam J Willcocks
- Department of Infection Biology, The London School of Hygiene and Tropical Medicine London WC1E 7HT UK
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - Gayathri Srithiran
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo Buffalo New York-14203 USA
| | - Claire Simons
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| |
Collapse
|
7
|
Eissa AG, Barrow D, Gee J, Powell LE, Foster PA, Simons C. 4th generation nonsteroidal aromatase inhibitors: An iterative SAR-guided design, synthesis, and biological evaluation towards picomolar dual binding inhibitors. Eur J Med Chem 2022; 240:114569. [PMID: 35834906 DOI: 10.1016/j.ejmech.2022.114569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
One in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects. Novel triazole-based inhibitors were designed based on previously published parent compound 5a, making use of the now available crystal structure of CYP19A1 (PDB 3S79), to make modifications at specific sites to explore the potential of dual binding at both the active site and the access channel. Modifications included adding long chain substituents e.g. but-2-ynyloxy and pent-2-ynyloxy at different positions including the most active compound 13h with IC50 value in the low picomolar range (0.09 nM). Aromatase inhibition results paired with molecular dynamics studies provided a clear structure activity relationship and favourable dual binding mode was verified. Toxicity assays and CYP selectivity profile studies for some example compounds were performed to assess the safety profile of the prepared inhibitors providing the basis for the 4th generation nonsteroidal aromatase inhibitors.
Collapse
Affiliation(s)
- Ahmed G Eissa
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Denise Barrow
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Julia Gee
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Lauren E Powell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
8
|
Niu X, Lin L, Liu L, Yu Y, Wang H. Antifungal activity and molecular mechanisms of mulberrin derivatives against Colletotrichum gloeosporioides for mango storage. Int J Food Microbiol 2022; 378:109817. [PMID: 35759883 DOI: 10.1016/j.ijfoodmicro.2022.109817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/26/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
In this work, by using high throughput virtual screening and bioactivity assays, this work revealed that three natural compounds, mulberrin (Mul) exhibiting the highest anti-CYP51 activity, isoxanthohumol and (s)-isopsoralen markedly inhibited 14α-demethylase (a pivotal biosynthetic enzyme involved in the biosynthesis of ergosterol) in Colletotrichum gloeosporioides. Results of computational biology analysis demonstrated that, among the three inhibitors bound to the catalytic pocket of CYP51, Mul showed a closer distance with heme in CYP51 and a stronger binding free energy with CYP51. In vitro tests, Mul demonstrated excellent anti-Colletotrichum gloeosporioides activity by inhibiting CYP51 activity. Notably, Mul treatment decreased the bioactivity of CYP51, thereby increasing cell membrane permeability and cell death. Moreover, Mul treatment significantly prolonged the preservation period of fruits. These results suggest that Mul suppresses anthracnose in postharvest mango by inhibiting the growth of Colletotrichum gloeosporioides and can be used as a potential natural preserving agent.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yiding Yu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Cordero-Díaz A, Robledo-Leal E, Hernández-Fernández E, Hernández-Núñez E, Elizondo-Zertuche M, López-Cortina ST. Novel α-Aminophosphonates and α-Aminophosphonic Acids: Synthesis, Molecular Docking and Evaluation of Antifungal Activity against Scedosporium Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123886. [PMID: 35745009 PMCID: PMC9229981 DOI: 10.3390/molecules27123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
The Scedosporium genus is an emerging pathogen with worldwide prevalence and high mortality rates that gives multidrug resistance to antifungals; therefore, pharmacological alternatives must be sought for the treatment of diseases caused by this fungus. In the present project, six new α-aminophosphates were synthesized by the Kabachnik–Fields multicomponent reaction by vortex agitation, and six new monohydrolyzed α-aminophosphonic acids were synthesized by an alkaline hydrolysis reaction. Antifungal activity was evaluated using the agar diffusion method as an initial screening to determine the most active compound compared to voriconazole; then it was evaluated against 23 strains of the genus Scedosporium following the M38-A2 protocol from CLSI (activity range: 648.76–700 µg/mL). Results showed that compound 5f exhibited the highest antifungal activity according to the agar diffusion method (≤1 mg/mL). Cytotoxicity against healthy COS-7 cells was also evaluated by the MTT assay and it was shown that compound 5f exhibits a lower toxicity in comparison to voriconazole at the same concentration (1000 µM). A docking study was conducted afterwards, showing that the possible mechanism of action of the compound is through the inhibition of allosteric 14-α-demethylase. Taking these results as a basis, 5f is presented as a compound with attractive properties for further studies.
Collapse
Affiliation(s)
- Anthonny Cordero-Díaz
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.C.-D.); (E.H.-F.)
| | - Efren Robledo-Leal
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Eugenio Hernández-Fernández
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.C.-D.); (E.H.-F.)
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Yucatán, Mexico;
| | - Mariana Elizondo-Zertuche
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño, Col. Mitras Centro, Monterrey 64460, Nuevo León, Mexico
- Correspondence: (M.E.-Z.); (S.T.L.-C.)
| | - Susana T. López-Cortina
- Laboratorio de Química Industrial, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.C.-D.); (E.H.-F.)
- Correspondence: (M.E.-Z.); (S.T.L.-C.)
| |
Collapse
|
10
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Phenylalanyl tRNA synthetase (PheRS) substrate mimics: design, synthesis, molecular dynamics and antimicrobial evaluation. RSC Adv 2022; 12:2511-2524. [PMID: 35425259 PMCID: PMC8979089 DOI: 10.1039/d1ra06439h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Nineteen novel compounds were designed to mimic Phe-AMP, as a new hope to find novel antibacterial agents and combat the antibiotic resistance. E. faecalis PheS homology model was constructed to study the mimics–enzyme interactions in more detail.
Collapse
Affiliation(s)
- Nada A. Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mohammed M. Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Sobhy M. Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
12
|
Wei C, Zhao W, Fan R, Meng Y, Yang Y, Wang X, Foroud NA, Liu D, Yu X. Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS One 2021; 16:e0250479. [PMID: 34293801 PMCID: PMC8298115 DOI: 10.1371/journal.pone.0250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins play critical roles in plant responses to biotic/abiotic stresses. In the present study, a total of 68 wheat F-box/Kelch (TaFBK) genes, unevenly distributed across 21 chromosomes and encoding 74 proteins, were identified in EnsemblPlants. Protein sequences were compared with those of Arabidopsis and three cereal species by phylogenetic and domain analyses, where the wheat sequences were resolved into 6 clades. In silico analysis of a digital PCR dataset revealed that TaFBKs were expressed at multiple developmental stages and tissues, and in response to drought and/or heat stresses. The TaFBK19 gene, a homolog of the Attenuated Far-Red Response (AFR) genes in other plant species, and hence named TaAFR, was selected for further analysis. Reverse-transcription quantitative real-time PCR (RT-qPCR) was carried out to determine tissue-specific, hormone and stress (abiotic/biotic) responsive expression patterns. Of interest, TaAFR was expressed most abundantly in the leaves, and its expression in response to leaf rust variants suggests a potential role in compatible vs incompatible rust responses. The protein was predicted to localize in cytosol, but it was shown experimentally to localize in both the cytosol and the nucleus of tobacco. A series of protein interaction studies, starting with a yeast-2-hybrid (Y2H) library screen (wheat leaf infected with incompatible leaf rust pathogens), led to the identification of three TaAFR interacting proteins. Skp1/ASK1-like protein (Skp1) was found to interact with the F-box domain of TaAFR, while ADP-ribosylation factor 2-like isoform X1 (ARL2) and phenylalanine ammonia-lyase (PAL) were shown to interact with its Kelch domain. The data presented herein provides a solid foundation from which the function and metabolic network of TaAFR and other wheat FBKs can be further explored.
Collapse
Affiliation(s)
- Chunru Wei
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Weiquan Zhao
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Runqiao Fan
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuyu Meng
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiming Yang
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Daqun Liu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
13
|
Sui YF, Ansari MF, Zhou CH. Pyrimidinetrione-imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation. Chem Asian J 2021; 16:1417-1429. [PMID: 33829660 DOI: 10.1002/asia.202100146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Substantial morbidity and mortality of fungal infections have aroused concerns all over the world, and common Candida spp. currently bring about severe systemic infections. A series of pyrimidinetrione-imidazole conjugates as potentially antifungal agents were developed. Bioassays manifested that 4-fluobenzyl pyrimidinetrione imidazole 5 f exerted favorable inhibition towards C. albicans (MIC=0.002 mM), being 6.5 folds more active than clinical antifungal drug fluconazole (MIC=0.013 mM). Preliminary mechanism research indicated that compound 5 f could not only depolarize membrane potential but also permeabilize the membrane of C. albicans. Molecular docking was operated to simulate the interaction mode between molecule 5 f and CYP51. In addition, hybrid 5 f might form 5 f-DNA supramolecular complex via intercalating into DNA. The interference of membrane and DNA might contribute to its fungicidal capacity with no obvious tendency to induce the resistance against C. albicans. Conjugate 5 f endowed good blood compatibility as well as low cytotoxicity towards HeLa and HEK-293T cells.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
14
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
15
|
Ogris I, Zelenko U, Sosič I, Gobec M, Skubic C, Ivanov M, Soković M, Kocjan D, Rozman D, Golič Grdadolnik S. Pyridylethanol(phenylethyl)amines are non-azole, highly selective Candida albicans sterol 14α-demethylase inhibitors. Bioorg Chem 2020; 106:104472. [PMID: 33261849 DOI: 10.1016/j.bioorg.2020.104472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Sterol 14α-demethylase (CYP51) is the main drug target for the treatment of fungal infections. The worldwide increase in the incidence of opportunistic fungal infections and the emerging resistance to available azole-based antifungal drugs, raise the need to develop structurally distinct and selective fungal CYP51 inhibitors. In this work we have, for the first time, investigated the binding of pyridylethanol(phenylethyl)amines to any fungal CYP51. The comparison of the binding to Candida albicans and human CYP51 studied by spectroscopic and modeling methods revealed moieties decisive for selectivity and potency and resulted in the development of highly selective derivatives with significantly increased inhibitory potency. The structure-based insight into the selectivity requirements of this new chemical class of fungal CYP51 inhibitors, their unique binding properties and the low molecular weight of lead derivatives offer novel directions for the targeted development of antifungal clinical candidates.
Collapse
Affiliation(s)
- Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Urška Zelenko
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Darko Kocjan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Kishk SM, Kishk RM, Yassen ASA, Nafie MS, Nemr NA, ElMasry G, Al-Rejaie S, Simons C. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules 2020; 25:E5007. [PMID: 33137894 PMCID: PMC7663346 DOI: 10.3390/molecules25215007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), which caused novel corona virus disease-2019 (COVID-19) pandemic, necessitated a global demand for studies related to genes and enzymes of SARS-CoV2. SARS-CoV2 infection depends on the host cell Angiotensin-Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease-2 (TMPRSS2), where the virus uses ACE2 for entry and TMPRSS2 for S protein priming. The TMPRSS2 gene encodes a Transmembrane Protease Serine-2 protein (TMPS2) that belongs to the serine protease family. There is no crystal structure available for TMPS2, therefore, a homology model was required to establish a putative 3D structure for the enzyme. A homology model was constructed using SWISS-MODEL and evaluations were performed through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). Molecular dynamics simulations were employed to investigate the stability of the constructed model. Docking of TMPS2 inhibitors, camostat, nafamostat, gabexate, and sivelestat, using Molecular Operating Environment (MOE) software, into the constructed model was performed and the protein-ligand complexes were subjected to MD simulations and computational binding affinity calculations. These in silico studies determined the tertiary structure of TMPS2 amino acid sequence and predicted how ligands bind to the model, which is important for drug development for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Safaa M. Kishk
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Rania M. Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Nader A. Nemr
- Endemic and Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Gamal ElMasry
- Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Claire Simons
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF103NB, UK;
| |
Collapse
|
17
|
Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals (Basel) 2020; 13:ph13080186. [PMID: 32784450 PMCID: PMC7464559 DOI: 10.3390/ph13080186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
A series of 2-aryl-3-azolyl-1-indolyl-propan-2-ols was designed as new analogs of fluconazole (FLC) by replacing one of its two triazole moieties by an indole scaffold. Two different chemical approaches were then developed. The first one, in seven steps, involved the synthesis of the key intermediate 1-(1H-benzotriazol-1-yl)methyl-1H-indole and the final opening of oxiranes by imidazole or 1H-1,2,4-triazole. The second route allowed access to the target compounds in only three steps, this time with the ring opening by indole and analogs. Twenty azole derivatives were tested against Candida albicans and other Candida species. The enantiomers of the best anti-Candida compound, 2-(2,4-dichlorophenyl)-3-(1H-indol-1-yl)-1-(1H-1,2,4-triazol-1-yl)-propan-2-ol (8g), were analyzed by X-ray diffraction to determine their absolute configuration. The (−)-8g enantiomer (Minimum inhibitory concentration (MIC) = IC80 = 0.000256 µg/mL on C. albicans CA98001) was found with the S-absolute configuration. In contrast the (+)-8g enantiomer was found with the R-absolute configuration (MIC = 0.023 µg/mL on C. albicans CA98001). By comparison, the MIC value for FLC was determined as 0.020 µg/mL for the same clinical isolate. Additionally, molecular docking calculations and molecular dynamics simulations were carried out using a crystal structure of Candida albicans lanosterol 14α-demethylase (CaCYP51). The (−)-(S)-8g enantiomer aligned with the positioning of posaconazole within both the heme and access channel binding sites, which was consistent with its biological results. All target compounds have been also studied against human fetal lung fibroblast (MRC-5) cells. Finally, the selectivity of four compounds on a panel of human P450-dependent enzymes (CYP19, CYP17, CYP26A1, CYP11B1, and CYP11B2) was investigated.
Collapse
|
18
|
Binjubair FA, Parker JE, Warrilow AG, Puri K, Braidley PJ, Tatar E, Kelly SL, Kelly DE, Simons C. Small-Molecule Inhibitors Targeting Sterol 14α-Demethylase (CYP51): Synthesis, Molecular Modelling and Evaluation Against Candida albicans. ChemMedChem 2020; 15:1294-1309. [PMID: 32459374 PMCID: PMC7496091 DOI: 10.1002/cmdc.202000250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Indexed: 12/20/2022]
Abstract
Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide (5 f) <0.03 μg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide (12 c), 1 μg/mL, fluconazole 0.125 μg/mL) but both displayed comparable enzyme binding and inhibition (5 f Kd 62±17 nM, IC50 0.46 μM; 12 c Kd 43±18 nM, IC50 0.33 μM, fluconazole Kd 41±13 nM, IC50 0.31 μM, posaconazole Kd 43±11 nM, IC50 0.2 μM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c, was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.
Collapse
Affiliation(s)
- Faizah A. Binjubair
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Josie E. Parker
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Andrew G. Warrilow
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Kalika Puri
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Peter J. Braidley
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Esra Tatar
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University34668IstanbulTurkey
| | - Steven L. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Diane E. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Claire Simons
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| |
Collapse
|