1
|
Tretbar M, Schliehe-Diecks J, von Bredow L, Tan K, Roatsch M, Tu JW, Kemkes M, Sönnichsen M, Schöler A, Borkhardt A, Bhatia S, Hansen FK. Preferential HDAC6 inhibitors derived from HPOB exhibit synergistic antileukemia activity in combination with decitabine. Eur J Med Chem 2024; 272:116447. [PMID: 38714044 DOI: 10.1016/j.ejmech.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.
Collapse
Affiliation(s)
- Maik Tretbar
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Roatsch
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Marie Kemkes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
2
|
Liu L, Zhang L, Chen X, Yang K, Cui H, Qian R, Zhao S, Wang L, Su X, Zhao M, Wang M, Hu Z, Lu T, Zhu Y, Zhou QQ, Yao Y. Design and synthesis of 1H-benzo[d]imidazole selective HDAC6 inhibitors with potential therapy for multiple myeloma. Eur J Med Chem 2023; 261:115833. [PMID: 37797564 DOI: 10.1016/j.ejmech.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Pan-HDAC inhibitors exhibit significant inhibitory activity against multiple myeloma, however, their clinical applications have been hampered by substantial toxic side effects. In contrast, selective HDAC6 inhibitors have demonstrated effectiveness in treating multiple myeloma. Compounds belonging to the class of 1H-benzo[d]imidazole hydroxamic acids have been identified as novel HDAC6 inhibitors, with the benzimidazole group serving as a specific linker for these inhibitors. Notably, compound 30 has exhibited outstanding HDAC6 inhibitory activity (IC50 = 4.63 nM) and superior antiproliferative effects against human multiple myeloma cells, specifically RPMI-8226. Moreover, it has been shown to induce cell cycle arrest in the G2 phase and promote apoptosis through the mitochondrial pathway. In a myeloma RPMI-8226 xenograft model, compound 30 has demonstrated significant in vivo antitumor efficacy (T/C = 34.8%) when administered as a standalone drug, with no observable cytotoxicity. These findings underscore the immense potential of compound 30 as a promising therapeutic agent for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Linfu Liu
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liyuan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kang Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hao Cui
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Rui Qian
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Shanshan Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu, 211100, PR China; Department of Diagnostic Radiology, Jinling Hospital, Affiliated Nanjing Medical University, Nanjing, 210002, PR China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
4
|
Burmeister A, Stephan A, Alves Avelar LA, Müller MR, Seiwert A, Höfmann S, Fischer F, Torres-Gomez H, Hoffmann MJ, Niegisch G, Bremmer F, Petzsch P, Köhrer K, Albers P, Kurz T, Skowron MA, Nettersheim D. Establishment and Evaluation of Dual HDAC/BET Inhibitors as Therapeutic Options for Germ Cell Tumors and Other Urological Malignancies. Mol Cancer Ther 2022; 21:1674-1688. [PMID: 35999659 PMCID: PMC9630828 DOI: 10.1158/1535-7163.mct-22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Urological malignancies represent major challenges for clinicians, with annually rising incidences. In addition, cisplatin treatment induced long-term toxicities and the development of therapy resistance emphasize the need for novel therapeutics. In this study, we analyzed the effects of novel histone deacetylase (HDAC) and bromodomain and extraterminal domain-containing (BET) inhibitors to combine them into a potent HDAC-BET-fusion molecule and to understand their molecular mode-of-action. Treatment of (cisplatin-resistant) germ cell tumors (GCT), urothelial, renal, and prostate carcinoma cells with the HDAC, BET, and dual inhibitors decreased cell viability, induced apoptosis, and affected the cell cycle. Furthermore, a dual inhibitor considerably decreased tumor burden in GCT xenograft models. On a molecular level, correlating RNA- to ATAC-sequencing data indicated a considerable induction of gene expression, accompanied by site-specific changes of chromatin accessibility after HDAC inhibitor application. Upregulated genes could be linked to intra- and extra-cellular trafficking, cellular organization, and neuronal processes, including neuroendocrine differentiation. Regarding chromatin accessibility on a global level, an equal distribution of active or repressed DNA accessibility has been detected after HDAC inhibitor treatment, questioning the current understanding of HDAC inhibitor function. In summary, our HDAC, BET, and dual inhibitors represent a new treatment alternative for urological malignancies. Furthermore, we shed light on new molecular and epigenetic mechanisms of the tested epi-drugs, allowing for a better understanding of the underlying modes-of-action and risk assessment for the patient.
Collapse
Affiliation(s)
- Aaron Burmeister
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leandro A. Alves Avelar
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie R. Müller
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Seiwert
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Höfmann
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Fischer
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hector Torres-Gomez
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Urological Research Laboratory, Bladder Cancer Group, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Guenter Niegisch
- Department of Urology, Urological Research Laboratory, Bladder Cancer Group, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Kurz
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Corresponding Authors: Daniel Nettersheim, University Hospital Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany. Phone: 49-021-1811-5844; E-mail: ; and Margaretha A. Skowron,
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Corresponding Authors: Daniel Nettersheim, University Hospital Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany. Phone: 49-021-1811-5844; E-mail: ; and Margaretha A. Skowron,
| |
Collapse
|
5
|
Geurs S, Clarisse D, Baele F, Franceus J, Desmet T, De Bosscher K, D'hooghe M. Identification of mercaptoacetamide-based HDAC6 inhibitors via a lean inhibitor strategy: screening, synthesis, and biological evaluation. Chem Commun (Camb) 2022; 58:6239-6242. [PMID: 35510683 DOI: 10.1039/d2cc01550a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-selective inhibition of different histone deacetylase enzymes by hydroxamic acid-based drugs causes severe side effects when used as a (long-term) cancer treatment. In this work, we searched for a potent zinc-binding group able to replace the contested hydroxamic acid by employing a lean inhibitor strategy. This instructed the synthesis of a set of HDAC6-selective inhibitors containing the more desirable mercaptoacetamide moiety. Biological evaluation of these new compounds showed an IC50 in the nanomolar range, dose-dependent HDAC6 inhibition in MM1.S cells and improved genotoxicity results, rendering these new inhibitors valuable hits for applications even beyond oncology.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium. .,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, FSVMII, Zwijnaarde, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, FSVMII, Zwijnaarde, Belgium.,Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, FSVMII, Zwijnaarde, Belgium
| | - Freya Baele
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Jorick Franceus
- Center for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Desmet
- Center for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, FSVMII, Zwijnaarde, Belgium.,Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, FSVMII, Zwijnaarde, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|