1
|
Corner T, Tumber A, Salah E, Jabbary M, Nakashima Y, Schnaubelt LI, Basak S, Alshref FM, Brewitz L, Schofield CJ. Derivatives of the Clinically Used HIF Prolyl Hydroxylase Inhibitor Desidustat Are Efficient Inhibitors of Human γ-Butyrobetaine Hydroxylase. J Med Chem 2025; 68:9777-9798. [PMID: 40263713 PMCID: PMC12067446 DOI: 10.1021/acs.jmedchem.5c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
The 2-oxoglutarate (2OG)/Fe(II)-dependent γ-butyrobetaine hydroxylase (BBOX) catalyzes the final step in l-carnitine biosynthesis, i.e., stereoselective C-3 oxidation of γ-butyrobetaine (GBB). BBOX inhibition is a validated clinical strategy to modulate l-carnitine levels and to enhance cardiovascular efficiency. Reported BBOX inhibitors, including the clinically used cardioprotective agent Mildronate, manifest moderate inhibitory activity in vitro, limited selectivity, and/or unfavorable physicochemical properties, indicating a need for improved BBOX inhibitors. We report that the clinically used hypoxia-inducible factor-α prolyl residue hydroxylase (PHD) inhibitors Desidustat, Enarodustat, and Vadadustat efficiently inhibit isolated recombinant BBOX, suggesting that BBOX inhibition by clinically used PHD inhibitors should be considered as a possible off-target effect. Structure-activity relationship studies on the Desidustat scaffold enabled development of potent BBOX inhibitors that manifest high levels of selectivity for BBOX inhibition over representative human 2OG oxygenases, including PHD2. The Desidustat derivatives will help to enable investigations into the biological roles of l-carnitine and the therapeutic potential of BBOX inhibition.
Collapse
Affiliation(s)
- Thomas
P. Corner
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Mohammadparsa Jabbary
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Yu Nakashima
- Institute
of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Lara I. Schnaubelt
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Shyam Basak
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Faisal M. Alshref
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Biochemistry, Faculty of Science, King
AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
2
|
Corner TP, Salah E, Tumber A, Kaur S, Nakashima Y, Allen MD, Schnaubelt LI, Fiorini G, Brewitz L, Schofield CJ. Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat. ChemMedChem 2024; 19:e202400504. [PMID: 39291299 DOI: 10.1002/cmdc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3) are 2-oxoglutarate (2OG)-dependent oxygenases catalysing C-4 hydroxylation of prolyl residues in α-subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF), modifications that promote HIF-α degradation via the ubiquitin-proteasome pathway. Pharmacological inhibition of the PHDs induces HIF-α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1-3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA-damage repair, and agrochemical resistance.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Present Address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States of America
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Samanpreet Kaur
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Mark D Allen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lara I Schnaubelt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
3
|
Fiorini G, Marshall SA, Figg WD, Myers WK, Brewitz L, Schofield CJ. Human prolyl hydroxylase domain 2 reacts with O 2 and 2-oxoglutarate to enable formation of inactive Fe(III).2OG.hypoxia-inducible-factor α complexes. Sci Rep 2024; 14:26162. [PMID: 39478091 PMCID: PMC11525979 DOI: 10.1038/s41598-024-75761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hypoxia inducible transcription factors (HIFs) mediate the hypoxic response in metazoans. When sufficient O2 is present, Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases (human PHD1-3) promote HIFα degradation via prolyl-hydroxylation. We report crystallographic, spectroscopic, and biochemical characterization of stable and inactive PHD2.Fe(III).2OG complexes. Aerobic incubation of PHD2 with Fe(II) and 2OG enables formation of PHD2.Fe(III).2OG complexes which bind HIF1-2α to give inactive PHD2.Fe(III).2OG.HIF1-2α complexes. The Fe(III) oxidation state in the inactive complexes was shown by EPR spectroscopy. L-Ascorbate hinders formation of the PHD2.Fe(III).2OG.(+/-HIFα) complexes and slowly regenerates them to give the catalytically active PHD2.Fe(II).2OG complex. Crystallographic comparison of the PHD2.Fe(III).2OG.HIF2α complex with the analogous anaerobic Fe(II) complex reveals near identical structures. Exposure of the anaerobic PHD2.Fe(II).2OG.HIF2α crystals to O2 enables in crystallo hydroxylation. The resulting PHD2.product structure, manifests conformational changes compared to the substrate structures. The results have implications for the role of the PHDs in hypoxia sensing and open new opportunities for inhibition of the PHDs and other 2OG dependent oxygenases by promoting formation of stable Fe(III) complexes.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen A Marshall
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
4
|
Matheoudakis K, O'Connor JJ. Modulatory and protective effects of prolyl hydroxylase domain inhibitors in the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:211-235. [PMID: 39929580 DOI: 10.1016/bs.apha.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Oxygen is essential for all mammalian species, with complex organs such as the brain requiring a large and steady supply to function. During times of low or inadequate oxygen supply (hypoxia), adaptation is required in order to continue to function. Hypoxia inducible factors (HIF) are transcription factors which are activated during hypoxia and upregulate protective genes. Normally, when oxygen levels are sufficient (normoxia) HIFs are degraded by oxygen sensing prolyl hydroxylase domain proteins (PHD), but during hypoxia PHDs no longer exert influence on HIFs allowing their activation. Given that PHDs regulate the activity of HIFs, their pharmacological inhibition through PHD inhibitors (PHDIs) is believed to be the basis of their neuroprotective benefits. This review discusses some of the potential therapeutic benefits of PHDIs in a number of neurological disorders which see hypoxia as a major pathophysiological mechanism. These include stroke, Parkinson's disease, and amyotrophic lateral sclerosis. We also explore the potential neuroprotective benefits and limitations of PHDIs in a variety of disorders in the central nervous system (CNS). Additionally, the activation of HIFs by PHDIs can have modulatory effects on CNS functions such as neurotransmission and synaptic plasticity, mechanisms critical to cognitive processes such as learning and memory.
Collapse
Affiliation(s)
- Konstantinos Matheoudakis
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
5
|
Liu J, Gao Y, Zhang X. A patent review on hypoxia-inducible factor (HIF) modulators (2021-2023). Expert Opin Ther Pat 2024; 34:651-664. [PMID: 38874005 DOI: 10.1080/13543776.2024.2368739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) is a central regulatory factor in detecting and adapting to cellular oxygen stress. Dysregulation of HIF is associated with various human diseases. Seven HIF modulators, including six prolyl hydroxylase (PHD) inhibitors and one HIF-2α inhibitor, have already been approved for the treatment of renal anemia and cancer, respectively. AREAS COVERED This review summarizes HIF modulators patented in the 2021-2023 period. This review provides an overview of HIF downregulators, including HIF-1α inhibitors, HIF-2α inhibitors, and HIF-2α degraders, as well as HIF upregulators, including PHD, FIH, and VHL inhibitors, and HIF-2α and HIF-3α agonists. EXPERT OPINION Efforts should be made to address the adverse clinical effects associated with approved HIF-modulating drugs, including PHD inhibitors and HIF-2α inhibitors. Identification of the specific buried cavity in the HIF-2α and an opened pocket in HIF-3α offer an avenue for designing novel modulators for HIF-2α or HIF-3α. Given the similarities observed in the binding cavities of HIF-2α and HIF-3α, it should be considered whether the approved HIF-2α inhibitors also inhibit HIF-3α. A comprehensive understanding of the HIF signaling pathway biology would lead to the development of novel small-molecule HIF modulators as innovative therapeutic approaches for a wide range of human diseases.
Collapse
Affiliation(s)
| | - Yinli Gao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Lawson H, Holt-Martyn JP, Dembitz V, Kabayama Y, Wang LM, Bellani A, Atwal S, Saffoon N, Durko J, van de Lagemaat LN, De Pace AL, Tumber A, Corner T, Salah E, Arndt C, Brewitz L, Bowen M, Dubusse L, George D, Allen L, Guitart AV, Fung TK, So CWE, Schwaller J, Gallipoli P, O'Carroll D, Schofield CJ, Kranc KR. The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia. NATURE CANCER 2024; 5:916-937. [PMID: 38637657 PMCID: PMC11208159 DOI: 10.1038/s43018-024-00761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.
Collapse
Affiliation(s)
- Hannah Lawson
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Physiology and Immunology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Yuka Kabayama
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lydia M Wang
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Aarushi Bellani
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Samanpreet Atwal
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Nadia Saffoon
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jozef Durko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louie N van de Lagemaat
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Azzura L De Pace
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Thomas Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Christine Arndt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Matthew Bowen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Louis Dubusse
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Derek George
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lewis Allen
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Tsz Kan Fung
- Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, King's College London, London, UK
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, King's College London, London, UK
| | - Juerg Schwaller
- University Children's Hospital Basel (UKBB), Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Donal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.
| | - Kamil R Kranc
- The Institute of Cancer Research, London, UK.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
8
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
9
|
Lavilla-Puerta M, Latter R, Bellè F, Cervelli T, Galli A, Perata P, Chini A, Flashman E, Giuntoli B. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen. J Biol Chem 2023; 299:105366. [PMID: 37863264 PMCID: PMC10692734 DOI: 10.1016/j.jbc.2023.105366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.
Collapse
Affiliation(s)
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Beatrice Giuntoli
- Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
10
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
11
|
Figg WD, Fiorini G, Chowdhury R, Nakashima Y, Tumber A, McDonough MA, Schofield CJ. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2. Proteins 2023; 91:1510-1524. [PMID: 37449559 PMCID: PMC10952196 DOI: 10.1002/prot.26541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.
Collapse
Affiliation(s)
- William D. Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
- Institute of Natural Medicine, University of ToyamaToyamaJapan
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Michael A. McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| |
Collapse
|
12
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
13
|
Brewitz L, Nakashima Y, Piasecka SK, Salah E, Fletcher SC, Tumber A, Corner TP, Kennedy TJ, Fiorini G, Thalhammer A, Christensen KE, Coleman ML, Schofield CJ. 5-Substituted Pyridine-2,4-dicarboxylate Derivatives Have Potential for Selective Inhibition of Human Jumonji-C Domain-Containing Protein 5. J Med Chem 2023; 66:10849-10865. [PMID: 37527664 PMCID: PMC10424186 DOI: 10.1021/acs.jmedchem.3c01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Jumonji-C domain-containing protein 5 (JMJD5) is a 2-oxoglutarate (2OG)-dependent oxygenase that plays important roles in development, circadian rhythm, and cancer through unclear mechanisms. JMJD5 has been reported to have activity as a histone protease, as an Nε-methyl lysine demethylase, and as an arginine residue hydroxylase. Small-molecule JMJD5-selective inhibitors will be useful for investigating its (patho)physiological roles. Following the observation that the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylic acid (2,4-PDCA) is a 2OG-competing JMJD5 inhibitor, we report that 5-aminoalkyl-substituted 2,4-PDCA derivatives are potent JMJD5 inhibitors manifesting selectivity for JMJD5 over other human 2OG oxygenases. Crystallographic analyses with five inhibitors imply induced fit binding and reveal that the 2,4-PDCA C5 substituent orients into the JMJD5 substrate-binding pocket. Cellular studies indicate that the lead compounds display similar phenotypes as reported for clinically observed JMJD5 variants, which have a reduced catalytic activity compared to wild-type JMJD5.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Yu Nakashima
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Sonia K. Piasecka
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Sally C. Fletcher
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Thomas P. Corner
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Tristan J. Kennedy
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Giorgia Fiorini
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Armin Thalhammer
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Kirsten E. Christensen
- Chemical
Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| | - Mathew L. Coleman
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, U.K.
| |
Collapse
|
14
|
Wu Y, Zhang L, Sun Z, Qiu X, Chen Y, Su K, Yang L, Du Z, Dong Y, Yang F, Li X, Zhang X. Preferred Conformation-Guided Discovery of Potent and Orally Active HIF Prolyl Hydroxylase 2 Inhibitors for the Treatment of Anemia. J Med Chem 2023. [PMID: 37367818 DOI: 10.1021/acs.jmedchem.3c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In this work, we discovered a novel series of prolyl hydroxylase 2 (PHD2) inhibitors with improved metabolic properties based on a preferred conformation-guided drug design strategy. Piperidinyl-containing linkers with preferred metabolic stability were designed to match the dihedral angle of the desired docking conformation in the PHD2 binding site with the lowest energy conformation. Based on the piperidinyl-containing linkers, a series of PHD2 inhibitors with high PHD2 affinity and favorable druggability were obtained. Remarkably, compound 22, with an IC50 of 22.53 nM toward PHD2, significantly stabilized hypoxia-inducible factor α (HIF-α) and upregulated the expression of erythropoietin (EPO). Furthermore, oral administration of 22 dose-dependently stimulated erythropoiesis in vivo. Preliminary preclinical studies showed that 22 has good pharmacokinetic properties and an excellent safety profile, even at 10 times the efficacious dose (200 mg/kg). Taken together, these results indicate that 22 is a promising candidate for anemia treatment.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjian Zhang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhuoli Sun
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xusheng Qiu
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yafen Chen
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Kaijun Su
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Le Yang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongqiu Du
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ying Dong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Semenza GL. Regulation of Erythropoiesis by the Hypoxia-Inducible Factor Pathway: Effects of Genetic and Pharmacological Perturbations. Annu Rev Med 2023; 74:307-319. [PMID: 35773226 DOI: 10.1146/annurev-med-042921-102602] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Red blood cells transport O2 from the lungs to body tissues. Hypoxia stimulates kidney cells to secrete erythropoietin (EPO), which increases red cell mass. Hypoxia-inducible factors (HIFs) mediate EPO gene transcriptional activation. HIF-α subunits are subject to O2-dependent prolyl hydroxylation and then bound by the von Hippel-Lindau protein (VHL), which triggers their ubiquitination and proteasomal degradation. Mutations in the genes encoding EPO, EPO receptor, HIF-2α, prolyl hydroxylase domain protein 2 (PHD2), or VHL cause familial erythrocytosis. In addition to O2, α-ketoglutarate is a substrate for PHD2, and analogs of α-ketoglutarate inhibit hydroxylase activity. In phase III clinical trials evaluating the treatment of anemia in chronic kidney disease, HIF prolyl hydroxylase inhibitors were as efficacious as darbepoetin alfa in stimulating erythropoiesis. However, safety concerns have arisen that are focused on thromboembolism, which is also a phenotypic manifestation of VHL or HIF-2α mutation, suggesting that these events are on-target effects of HIF prolyl hydroxylase inhibitors.
Collapse
Affiliation(s)
- Gregg L Semenza
- McKusick-Nathans Department of Genetic Medicine and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
16
|
Park GY, Park C, Lee SK, Im CY, Kim S, Hwang HJ, Lee J, Lee T, Hong YR, Song M. Scaffold hopping strategy to derive
4‐hydroxy‐1‐alkyl‐2‐oxo
‐1,
2‐dihydrothieno
[2,3‐b:4,5‐b′]
dipyridine‐3‐carbonylglycine
derivatives as a novel
hypoxia‐inducible
factor prolyl hydroxylase domain inhibitor for the potential treatment of chronic kidney disease anemia. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ga Young Park
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy Kyungpook National University Daegu Korea
| | | | - Sang Kwang Lee
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| | - Chun Young Im
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| | - Soong‐Hyun Kim
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| | - Hee Jong Hwang
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| | - Jieon Lee
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy Kyungpook National University Daegu Korea
| | | | - Minsoo Song
- Department of Medicinal Chemistry, New Drug Discovery Center (NDDC) Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub) Daegu Korea
| |
Collapse
|
17
|
Islam MS, Markoulides M, Chowdhury R, Schofield CJ. Structural analysis of the 2-oxoglutarate binding site of the circadian rhythm linked oxygenase JMJD5. Sci Rep 2022; 12:20680. [PMID: 36450832 PMCID: PMC9712658 DOI: 10.1038/s41598-022-24154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
JmjC (Jumonji-C) domain-containing 5 (JMJD5) plays important roles in circadian regulation in plants and humans and is involved in embryonic development and cell proliferation. JMJD5 is a 2-oxoglutarate (2OG) and Fe(II) dependent oxygenase of the JmjC subfamily, which includes histone Nε-methyl lysine-demethylases (KDMs) and hydroxylases catalysing formation of stable alcohol products. JMJD5 is reported to have KDM activity, but has been shown to catalyse C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6) in vitro. We report crystallographic analyses of human JMJD5 complexed with 2OG analogues, including the widely used hypoxia mimic pyridine-2,4-dicarboxylate, both D- and L-enantiomers of the oncometabolite 2-hydroxyglutarate, and a cyclic N-hydroxyimide. The results support the assignment of JMJD5 as a protein hydroxylase and reveal JMJD5 has an unusually compact 2OG binding pocket suitable for exploitation in development of selective inhibitors. They will be useful in the development of chemical probes to investigate the physiologically relevant roles of JMJD5 in circadian rhythm and development and explore its potential as a medicinal chemistry target.
Collapse
Affiliation(s)
- Md Saiful Islam
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
18
|
Synthesis and biological evaluation of (4-hydroxy-2-(substitued sulfonamido)pyrimidine-5-carbonyl)glycines as oral erythropoietin secretagogues. Bioorg Med Chem Lett 2022; 76:129007. [PMID: 36174835 DOI: 10.1016/j.bmcl.2022.129007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Erythropoietin (EPO) is the predominant regulating factor in erythropoiesis. Herein we describe the identification of (4-hydroxy-2-(substitued sulfonamido)pyrimidine-5- carbonyl) glycine-based oral EPO secretagogues. Most of these compounds obviously increased the EPO level in Hep3B cells by stabilizing the hypoxia-inducible factor-α (HIF-α). Furthermore, their potential inhibitory activities against HIF prolyl hydroxylase domain (PHD) revealed their function as PHD inhibitors in PHD-HIF pathway. Compound 6i, with a biphenyl substituent on the sulfonamido group, particularly increased plasma EPO level in mice and could serve as a candidate of EPO stimulating agent for anemia treatment.
Collapse
|
19
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
20
|
Rabe P, Walla CC, Goodyear NK, Welsh J, Southwart R, Clifton I, Linyard JDS, Tumber A, Claridge TDW, Myers WK, Schofield CJ. Spectroscopic studies reveal details of substrate-induced conformational changes distant from the active site in isopenicillin N synthase. J Biol Chem 2022; 298:102249. [PMID: 35835215 PMCID: PMC9403350 DOI: 10.1016/j.jbc.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022] Open
Abstract
Isopenicillin N synthase (IPNS) catalyzes formation of the β-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS–Fe(II)–ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron–electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Carla C Walla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Noelle K Goodyear
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jordan Welsh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Rebecca Southwart
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
21
|
Zhongyin Z, Wei W, Juan X, Guohua F. Isoliquiritin apioside relieves intestinal ischemia/reperfusion-induced acute lung injury by blocking Hif-1α-mediated ferroptosis. Int Immunopharmacol 2022; 108:108852. [PMID: 35597117 DOI: 10.1016/j.intimp.2022.108852] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Isoliquiritin apioside (IA), a critical ingredient of Glycyrrhizae radix et rhizoma, has been unveiled to possess remarkable pharmacological activity against oxidative stress and inflammation. However, the potential roles of IA in intestinal ischemia/reperfusion (I/R)-induced acute lung injury (ALI) have not been reported yet. In the present study, we explored the effects of IA on I/R-induced ALI, and also clarified the possible mechanisms. To mimic intestinal I/R-induced ALI, the mice were subjected to 60 min of intestinal ischemia via clamping of the superior mesenteric artery followed by 60 min of reperfusion. IA was administered orally (20 mg/kg/day and 50 mg/kg/day) for 7 consecutive days before intestinal I/R. Lung epithelial MLE-2 cells were subjected to hypoxia for 2 h and regeneration for 3 h to mimic in vitro ALI. The results showed that IA administration prevented intestinal I/R-induced lung injury, inflammation and edema. Also, IA administration decreased the level of ferroptosis in murine lung tissues challenged with intestinal I/R. In terms of mechanism, IA administration inhibited the protein upregulation of Hif-1α and HO-1 in mice with ALI. In vitro experiments further demonstrated that IA treatment could inhibit the mRNA and protein levels of Hif-1α in hypoxia/regeneration (H/R)-induced MLE-2 cells in a concentration-dependent manner. Hif-1α stabilizer molidustat itself also significantly promoted ferroptosis of MLE-2 cells. And Hif-1α activation increased the mRNA levels of Ptgs2 and Acsl4 but decreased the mRNA level of Gpx4 in H/R-induced MLE-2 cells treated with IA. Taken together, our study unveiled IA could protect against intestinal I/R-induced ALI by decreasing lung epithelial ferroptosis in a Hif-1α-dependent manner.
Collapse
Affiliation(s)
- Zhou Zhongyin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Wang Wei
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xiong Juan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Fan Guohua
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
22
|
Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Sci Rep 2022; 12:6065. [PMID: 35410347 PMCID: PMC9001643 DOI: 10.1038/s41598-022-10028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.
Collapse
|
23
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Ishii H, Shibuya M, So YM, Wong JKY, Ho ENM, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. Long-term monitoring of IOX4 in horse hair and its longitudinal distribution with segmental analysis using liquid chromatography/electrospray ionization Q Exactive high-resolution mass spectrometry for the purpose of doping control. Drug Test Anal 2022; 14:1244-1254. [PMID: 35195358 DOI: 10.1002/dta.3247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
IOX4, a hypoxia-inducible factor stabilizer, is classified as a banned substance for horses in both horse racing and equestrian sports. We recently reported the pharmacokinetic profiles of IOX4 in horse plasma and urine and also identified potential monitoring targets for the doping control purpose. In this study, a long-term longitudinal analysis of IOX4 in horse hair after a nasoesophageal administration of IOX4 (500 mg/day for three days) to three thoroughbred mares is presented for the first time for controlling the abuse/misuse of IOX4. Six bunches of mane hair were collected at 0 (pre), 1, 2, 3, and 6 month(s) post-administration. Our results showed that the presence of IOX4 was identified in all post-administration horse hair samples but no metabolite could be detected. The detection window for IOX4 could achieve up to 6-month post-administration (last sampling point) by monitoring IOX4 in hair. In order to evaluate the longitudinal distribution of IOX4 over six months, a validated quantification method of IOX4 in hair was developed for the analysis of the post-administration samples. Segmental analysis of 2-cm cut hair across the entire length of post-administration hair showed that IOX4 could be quantified up to the level of 1.84 pg/mg. In addition, it was found that the movement of the incorporated IOX4 band in the hair shaft over six months varied among the three horses due to individual variation and a significant diffusion of IOX4 band up to 10 cm width was also observed in the 6-month post-administration hair samples.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, JRA, Tokyo, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, JRA, Tokyo, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, Tochigi, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| |
Collapse
|
25
|
Shishodia S, Demetriades M, Zhang D, Tam NY, Maheswaran P, Clunie-O’Connor C, Tumber A, Leung IKH, Ng YM, Leissing TM, El-Sagheer AH, Salah E, Brown T, Aik WS, McDonough MA, Schofield CJ. Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors. J Med Chem 2021; 64:16609-16625. [PMID: 34762429 PMCID: PMC8631710 DOI: 10.1021/acs.jmedchem.1c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 01/09/2023]
Abstract
FTO catalyzes the Fe(II) and 2-oxoglutarate (2OG)-dependent modification of nucleic acids, including the demethylation of N6-methyladenosine (m6A) in mRNA. FTO is a proposed target for anti-cancer therapy. Using information from crystal structures of FTO in complex with 2OG and substrate mimics, we designed and synthesized two series of FTO inhibitors, which were characterized by turnover and binding assays, and by X-ray crystallography with FTO and the related bacterial enzyme AlkB. A potent inhibitor employing binding interactions spanning the FTO 2OG and substrate binding sites was identified. Selectivity over other clinically targeted 2OG oxygenases was demonstrated, including with respect to the hypoxia-inducible factor prolyl and asparaginyl hydroxylases (PHD2 and FIH) and selected JmjC histone demethylases (KDMs). The results illustrate how structure-based design can enable the identification of potent and selective 2OG oxygenase inhibitors and will be useful for the development of FTO inhibitors for use in vivo.
Collapse
Affiliation(s)
- Shifali Shishodia
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Marina Demetriades
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Dong Zhang
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Nok Yin Tam
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
SAR 999077, China
| | - Pratheesh Maheswaran
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Caitlin Clunie-O’Connor
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Anthony Tumber
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ivanhoe K. H. Leung
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Yi Min Ng
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
SAR 999077, China
| | - Thomas M. Leissing
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Afaf H. El-Sagheer
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Chemistry
Branch Department of Science and Mathematics, Suez University, Suez 43721, Egypt
| | - Eidarus Salah
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Tom Brown
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Wei Shen Aik
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
SAR 999077, China
| | - Michael A. McDonough
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Christopher J. Schofield
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
26
|
Ishii H, Shibuya M, So YM, Wong JKY, Ho ENM, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. Comprehensive metabolic study of IOX4 in equine urine and plasma using liquid chromatography/electrospray ionization Q Exactive high-resolution mass spectrometer for the purpose of doping control. Drug Test Anal 2021; 14:233-251. [PMID: 34612014 DOI: 10.1002/dta.3172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
IOX4 is a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, which was developed for the treatment of anemia by exerting hematopoietic effects. The administration of HIF-PHD inhibitors such as IOX4 to horses is strictly prohibited by the International Federation of Horseracing Authorities and the Fédération Équestre Internationale. To the best of our knowledge, this is the first comprehensive metabolic study of IOX4 in horse plasma and urine after a nasoesophageal administration of IOX4 (500 mg/day, 3 days). A total of four metabolites (three mono-hydroxylated IOX4 and one IOX4 glucuronide) were detected from the in vitro study using homogenized horse liver. As for the in vivo study, post-administration plasma and urine samples were comprehensively analyzed with liquid chromatography/electrospray ionization high-resolution mass spectrometry to identify potential metabolites and determine their corresponding detection times. A total of 10 metabolites (including IOX4 glucuronide, IOX4 glucoside, O-desbutyl IOX4, O-desbutyl IOX4 glucuronide, four mono-hydroxylated IOX4, N-oxidized IOX4, and N-oxidized IOX4 glucoside) were found in urine and three metabolites (glucuronide, glucoside, and O-desbutyl) in plasma. Thus, the respective quantification methods for the detection of free and conjugated IOX4 metabolites in urine and plasma with a biphase enzymatic hydrolysis were developed and applied to post-administration samples for the establishment of elimination profiles of IOX4. The detection times of total IOX4 in urine and plasma could be successfully prolonged to at least 312 h.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, JRA, Minato, Tokyo, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, JRA, Minato, Tokyo, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, Utsunomiya, Tochigi, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
27
|
Figg WD, McDonough MA, Chowdhury R, Nakashima Y, Zhang Z, Holt‐Martyn JP, Krajnc A, Schofield CJ. Structural Basis of Prolyl Hydroxylase Domain Inhibition by Molidustat. ChemMedChem 2021; 16:2082-2088. [PMID: 33792169 PMCID: PMC8359944 DOI: 10.1002/cmdc.202100133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Human prolyl-hydroxylases (PHDs) are hypoxia-sensing 2-oxoglutarate (2OG) oxygenases, catalysis by which suppresses the transcription of hypoxia-inducible factor target genes. PHD inhibition enables the treatment of anaemia/ischaemia-related disease. The PHD inhibitor Molidustat is approved for the treatment of renal anaemia; it differs from other approved/late-stage PHD inhibitors in lacking a glycinamide side chain. The first reported crystal structures of Molidustat and IOX4 (a brain-penetrating derivative) complexed with PHD2 reveal how their contiguous triazole, pyrazolone and pyrimidine/pyridine rings bind at the active site. The inhibitors bind to the active-site metal in a bidentate manner through their pyrazolone and pyrimidine nitrogens, with the triazole π-π-stacking with Tyr303 in the 2OG binding pocket. Comparison of the new structures with other PHD inhibitor complexes reveals differences in the conformations of Tyr303, Tyr310, and a mobile loop linking β2-β3, which are involved in dynamic substrate binding/product release.
Collapse
Affiliation(s)
- William D. Figg
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Rasheduzzaman Chowdhury
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Cardiovascular Research InstituteUniversity of California, San Francisco555 Mission Bay Blvd.San FranciscoCA 94158USA
| | - Yu Nakashima
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Institute of Natural MedicineUniversity of Toyama2630 SugitaniToyama930–0194Japan
| | - Zhihong Zhang
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Alen Krajnc
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
28
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|