1
|
Haider AS, Ambatwar R, Khatik GL. Insights into PTP1B inhibitors as antidiabetic agents: Current research and future perspectives. Eur J Med Chem 2025; 295:117791. [PMID: 40460723 DOI: 10.1016/j.ejmech.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a well-established target for diabetes and obesity due to its involvement in the negative regulation of insulin signaling. It exerts this effect by dephosphorylating the insulin receptor (IR) and insulin receptor substrate (IRS), attenuating insulin activity. It is a protein tyrosine phosphatase (PTP) superfamily member, which includes a wide range of enzymes encoded by 107 distinct genes. The catalytic site of the PTP superfamily is positively charged and highly conserved among its members, which presents a significant challenge to developing inhibitors in terms of selectivity and oral bioavailability. T-cell protein tyrosine phosphatase (TCPTP), which plays a crucial role in the proliferation of T-cells and B-cells, is a close homologue of PTP1B, sharing 74 % sequence similarity within the catalytic domain. Although considerable efforts have been made to develop a selective and potent PTP1B inhibitor, no molecule has yet been developed as a drug. However, a few candidate compounds reached phase II clinical trials, but their further study was discontinued due to suboptimal efficacy and the manifestation of undesirable side effects. In this review, we aimed to decipher the complications associated with the PTP1B enzyme and the design strategies used by various research groups to develop small-molecule inhibitors, emphasising the structure-activity relationship of small molecules synthesized for this target. This review also delineates the molecular features, which will aid in designing rational approaches and foster further research into this target of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Abu Sahban Haider
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Roxas JDP, San Juan MAD, Villagracia ARC, Espiritu RA. An in silico analysis of the interaction of marine sponge-derived bioactive compounds with type 2 diabetes mellitus targets DPP-4 and PTP1B. J Biomol Struct Dyn 2025; 43:4138-4151. [PMID: 38189304 DOI: 10.1080/07391102.2024.2301751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Type 2 diabetes is a medical condition involving elevated blood glucose levels resulting from impaired or improper insulin utilization. As the number of type 2 diabetes cases increases each year, there is an urgent need to develop novel drugs having new targets and/or complementing existing therapeutic protocols. In this regard, marine sponge-derived compounds hold great potential due to their potent biological activity and structural diversity. In this study, a small library of 50 marine sponge-derived compounds were examined for their activity towards type 2 diabetes targets, namely dipeptidyl peptidase-4 (DPP-4) and protein tyrosine phosphatase 1B (PTP1B). The compounds were first subjected to molecular docking on protein models based on their respective co-crystal structures to assess binding free energies (BFE) and conformations. Clustering analysis yielded BFE that ranged from 24.54 kcal/mol to -9.97 kcal/mol for DPP-4, and from -4.98 kcal/mol to -8.67 kcal/mol for PTP1B. Interaction analysis on the top ten compounds with the most negative BFE towards each protein target showed similar intermolecular interactions and key interacting residues as in the previously solved co-crystal structure. These compounds were subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling to characterize drug-likeness and combining the results from these analyses, (S)-6'-debromohamacanthin B was identified as a potential multi-target inhibitor of DPP-4 and PTP1B, having favorable protein interaction, no Lipinski violations, good gastrointestinal (GI) tract absorption, blood-brain barrier (BBB) penetration, and no predicted toxicity. Finally, the interaction of (S)-6'-debromohamacanthin B with the two proteins was validated using molecular dynamics simulations over 100 ns through RMSD, radius of gyration, PCA, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) confirming favorable interactions with the respective proteins.
Collapse
Affiliation(s)
| | | | - Al Rey C Villagracia
- Department of Physics, De La Salle University, Manila, Philippines
- Advanced Nanomaterials Investigation and Molecular Simulations (ANIMoS) Research Unit, CENSER, De La Salle University, Manila, Philippines
| | - Rafael A Espiritu
- Department of Chemistry, De La Salle University, Manila, Philippines
- Translational Research and Medicine (TRaM) Research Unit, CENSER, De La Salle University, Manila, Philippines
| |
Collapse
|
3
|
Maqueda‐Zelaya F, Valiño‐Rivas L, Milián A, Gutiérrez S, Aceña JL, Garcia‐Marin J, Sánchez‐Niño MD, Vaquero JJ, Ortiz A. Identification and study of new NF-κB-inducing kinase ligands derived from the imidazolone scaffold. Arch Pharm (Weinheim) 2025; 358:e2400614. [PMID: 39604268 PMCID: PMC11704032 DOI: 10.1002/ardp.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Chronic kidney disease (CKD) is a growing health concern, projected to be a major cause of death by 2040, due to an increasing risk of acute kidney injury (AKI). Systems biology-derived data suggest that the unmet need for an orally available drug to treat AKI and improve CKD outcomes may be addressed by targeting kidney inflammation and, specifically, nuclear factor κB-inducing kinase (NIK), a key signaling molecule that activates the noncanonical nuclear factor κB (NF-κB) pathway. We have prepared and identified a small family of imidazolone derivatives that bind NIK and inhibit the noncanonical NF-κB activation pathway. The introduction of heterocyclic substituents in position 2 of the imidazolone core provides compounds with affinity against human NIK. Three candidates, with best affinity profile, were tested in phenotypic experiments of noncanonical NF-κB activation, confirming that the derivative bearing the 4-pyridyl ring can inhibit the processing of NFκB p100 to NFkB2 p52, which is NIK-dependent in cultured kidney tubular cells. Finally, exhaustive docking calculations combined with molecular dynamics studies led us to propose a theoretical binding mode and rationalize affinity measures, in which the aminopyridine motif is a key anchoring point to the hinge region thanks to several hydrogen bonds and the interaction of heterocyclic rings in position 2 with Ser476 and Lys482. Our result will pave the way for the development of potential drug candidates targeting NIK in the context of CKD.
Collapse
Affiliation(s)
- Francisco Maqueda‐Zelaya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Lara Valiño‐Rivas
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
| | - Ana Milián
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Sara Gutiérrez
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - José Luis Aceña
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Javier Garcia‐Marin
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Mª Dolores Sánchez‐Niño
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
- Departamento de Farmacología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Alberto Ortiz
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
| |
Collapse
|
4
|
Singh R, Jain S, Paliwal V, Verma K, Paliwal S, Sharma S. Does Metabolic Manager Show Encouraging Outcomes in Alzheimer's?: Challenges and Opportunity for Protein Tyrosine Phosphatase 1b Inhibitors. Drug Dev Res 2024; 85:e70026. [PMID: 39655712 DOI: 10.1002/ddr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials. Notably, the preclinical studies have shown that recuperating metabolic dysfunction and dyshomeostasis can reverse cognition and could be a possible approach to mitigate multifaceted Alzheimer's disease (AD). PTP1b inhibitor thus has attracted attention in neuroscience, though the development is limited to the preclinical stage, and its exploration in large clinical trials is warranted. This review provides an insight on the development of PTP1b inhibitors from different sources in diabesity. The crosstalk between metabolic dysfunction and insulin insensitivity in AD and type-2 diabetes has also been highlighted. Furthermore, this review presents the significance of PTP1b inhibition in AD based on pathophysiological facets, and recent evidences from preclinical and clinical studies.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center Shreveport, Louisiana, USA
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
5
|
Khatoon H, Malek EA. A Focussed Analysis of β-cyclodextrins for Quinoxaline Derivatives Synthesis. CURR ORG CHEM 2024; 28:368-374. [DOI: 10.2174/0113852728295463240216074814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 08/18/2024]
Abstract
Abstract:
Cyclodextrins (CDs), which are a type of cyclic oligosaccharides, are widely used
in supramolecular chemistry. For example, they can be used to encapsulate volatile compounds,
such as drugs, within their hydrophobic cavity. This encapsulation reduces the volatility
of the compounds and helps to retain their desired properties. Due to its extraordinary
properties, cyclodextrins have been utilized as catalysts in numerous organic synthesis processes.
An intrinsic objective of organic chemists is to optimize the efficacy of organic synthesis
through the mitigation of chemical waste and energy expenditure. Utilizing water as a
green solvent is, therefore, economical, environmentally sustainable, and secure. It appears
that employing water in conjunction with a recyclable catalyst is the most effective method
for supramolecular catalysis. As a consequence, we focused this review on the use of water
as a solvent and cyclodextrin as a polymer catalyst to produce quinoxaline derivatives in an environmentally
friendly and sustainable manner.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Integrated Chemical
BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Khatoon H, Abdul Malek E, Faudzi SM, Rukayadi Y. Synthesis of a Series of Quinoxaline Derivatives and Their Antibacterial Effectiveness Against Pathogenic Bacteria. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202305073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 08/18/2024]
Abstract
AbstractThe pharmacological importance of quinoxaline derivatives in antibacterial research is well recognized. This study focuses on the synthesis of new 2,3‐dichloroquinoxaline derivatives containing thioether/ether groups to explore their potential as potent antibacterial agents against various pathogenic bacteria. Most of the compounds exhibited significant antibacterial properties comparable to the standard drug chlorhexidine (CHX). The derivatives of 2‐chloro‐3‐(arylthiol)quinoxaline demonstrated efficacy against Escherichia coli with minimum inhibitory concentrations (MIC) of 2.5 mg/mL and minimum bactericidal concentrations (MBC) of 2.5 to 5.0 mg/mL. These derivatives also showed similar sensitivity to Bacillus pumilus. In addition, molecular docking simulations were performed to investigate the interaction between the synthesized compounds and the DNA gyrase protein (PDB ID: 1KZN), a target for antibiotics. Among the synthesized compounds, 2,3‐bis(3‐nitrophenoxy)quinoxaline exhibited the most favourable docking score of −8.36 kcal/mol, with a binding affinity comparable to that of the reference ligand clorobiocin (−9.3 kcal/mol).
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Integrated Chemical BioPhysics Research Faculty of Science Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| | - Siti Munirah Faudzi
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
| | - Yaya Rukayadi
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
- Natural Medicines and Product Research Laboratory Institute of Bioscience Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| |
Collapse
|
7
|
Trifonov RE, Ostrovskii VA. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. Int J Mol Sci 2023; 24:17190. [PMID: 38139019 PMCID: PMC10742751 DOI: 10.3390/ijms242417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Tetrazole heterocycle is a promising scaffold in drug design, and it is incorporated into active pharmaceutical ingredients of medications of various actions: hypotensives, diuretics, antihistamines, antibiotics, analgesics, and others. This heterocyclic system is metabolically stable and easily participates in various intermolecular interactions with different biological targets through hydrogen bonding, conjugation, or van der Waals forces. In the present review, a systematic analysis of the activity of tetrazole derivatives against type 2 diabetes mellitus (T2DM) has been performed. As it was shown, the tetrazolyl moiety is a key fragment of many antidiabetic agents with different activities, including the following: peroxisome proliferator-activated receptors (PPARs) agonists, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase (AR) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) agonists, G protein-coupled receptor (GPCRs) agonists, glycogen phosphorylases (GP) Inhibitors, α-glycosidase (AG) Inhibitors, sodium glucose co-transporter (SGLT) inhibitors, fructose-1,6-bisphosphatase (FBPase) inhibitors, IkB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) inhibitors, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In many cases, the tetrazole-containing leader compounds markedly exceed the activity of medications already known and used in T2DM therapy, and some of them are undergoing clinical trials. In addition, tetrazole derivatives are very often used to act on diabetes-related targets or to treat post-diabetic disorders.
Collapse
Affiliation(s)
- Rostislav E. Trifonov
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Vladimir A. Ostrovskii
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg 199178, Russia
| |
Collapse
|
8
|
Coronell-Tovar A, Cortés-Benítez F, González-Andrade M. The importance of including the C-terminal domain of PTP1B 1-400 to identify potential antidiabetic inhibitors. J Enzyme Inhib Med Chem 2023; 38:2170369. [PMID: 36997321 PMCID: PMC10064822 DOI: 10.1080/14756366.2023.2170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
In the present work, we studied the inhibitory and kinetic implications of classical PTP1B inhibitors (chlorogenic acid, ursolic acid, suramin) using three enzyme constructs (hPTP1B1-285, hPTP1B1-321, and hPTP1B1-400). The results indicate that the unstructured region of PTP1B (300-400 amino acids) is very important both to obtain optimal inhibitory results and propose classical inhibition mechanisms (competitive or non-competitive) through kinetic studies. The IC50 calculated for ursolic acid and suramin using hPTP1B1-400 are around four and three times lower to the short form of the enzyme, the complete form of PTP1B, the one found in the cytosol (in vivo). On the other hand, we highlight the studies of enzymatic kinetics using the hPTP1B1-400 to know the type of enzymatic inhibition and to be able to direct docking studies, where the unstructured region of the enzyme can be one more option for binding compounds with inhibitory activity.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, México
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Agrawal N, Dhakrey P, Pathak S. A comprehensive review on the research progress of PTP1B inhibitors as antidiabetics. Chem Biol Drug Des 2023; 102:921-938. [PMID: 37232059 DOI: 10.1111/cbdd.14275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Diabetes mellitus (DM) is a serious global health concern affecting over 500 million people. To put it simply, it is one of the most dangerous metabolic illnesses. Insulin resistance is the root cause of 90% of all instances of diabetes, all of which are classified as Type 2 DM. Untreated, it poses a hazard to civilization since it can lead to terrifying consequences and even death. Oral hypoglycemic medicines presently available act in a variety of ways, targeting various organs and pathways. The use of protein tyrosine phosphatase 1B (PTP1B) inhibitors, on the contrary, is a novel and effective method of controlling type 2 diabetes. PTP1B is a negative insulin signaling pathway regulator; hence, inhibiting PTP1B increases insulin sensitivity, glucose absorption, and energy expenditure. PTP1B inhibitors also restore leptin signaling and are considered a potential obesity target. In this review, we have compiled a summary of the most recent advances in synthetic PTP1B inhibitors from 2015 to 2022 which have scope to be developed as clinical antidiabetic drugs.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Parth Dhakrey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Gómez-Rubio E, Garcia-Marin J. Molecular dynamics simulations reveal the impact of NUDT15 R139C and R139H variants in structural conformation and dynamics. J Biomol Struct Dyn 2023; 41:14812-14821. [PMID: 36907600 DOI: 10.1080/07391102.2023.2187626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
NUDT15, also known as MTH2, is a member of the NUDIX protein family that catalyzes the hydrolysis of nucleotides and deoxynucleotides, as well as thioguanine analogues. NUDT15 has been reported as a DNA sanitizer in humans, and more recent studies have shown that some genetic variants are related to a poor prognosis in neoplastic and immunologic diseases treated with thioguanine drugs. Despite this, the role of NUDT15 in physiology and molecular biology is quite unclear, as is the mechanism of action of this enzyme. The existence of clinically relevant variants has prompted the study of these enzymes, whose capacity to bind and hydrolyze thioguanine nucleotides is still poorly understood. By using a combination of biomolecular modeling techniques and molecular dynamics, we have studied the monomeric wild type NUDT15 as well as two important variants, R139C and R139H. Our findings reveal not only how nucleotide binding stabilizes the enzyme but also how two loops are responsible for keeping the enzyme in a packed, close conformation. Mutations in α2 helix affect a network of hydrophobic and π-interactions that enclose the active site. This knowledge contributes to the understanding of NUDT15 structural dynamics and will be valuable for the design of new chemical probes and drugs targeting this protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Gómez-Rubio
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá (IRYCIS), Madrid, Spain
| |
Collapse
|
11
|
García-Marín J, Rodríguez-Puyol D, Vaquero JJ. Insight into the mechanism of molecular recognition between human Integrin-Linked Kinase and Cpd22 and its implication at atomic level. J Comput Aided Mol Des 2022; 36:575-589. [PMID: 35869378 PMCID: PMC9512720 DOI: 10.1007/s10822-022-00466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 10/29/2022]
Abstract
AbsractPseudokinases have received increasing attention over the past decade because of their role in different physiological phenomena. Although pseudokinases lack several active-site residues, thereby hindering their catalytic activity, recent discoveries have shown that these proteins can play a role in intracellular signaling thanks to their non-catalytic functions. Integrin-linked kinase (ILK) was discovered more than two decades ago and was subsequently validated as a promising target for neoplastic diseases. Since then, only a few small-molecule inhibitors have been described, with the V-shaped pyrazole Cpd22 being the most interesting and characterized. However, little is known about its detailed mechanism of action at atomic level. In this study, using a combination of computational chemistry methods including PELE calculations, docking, molecular dynamics and experimental surface plasmon resonance, we were able to prove the direct binding of this molecule to ILK, thus providing the basis of its molecular recognition by the protein and the effect over its architecture. Our breakthroughs show that Cpd22 binding stabilizes the ILK domain by binding to the pseudo-active site in a similar way to the ATP, possibly modulating its scaffolding properties as pseudokinase. Moreover, our results explain the experimental observations obtained during Cpd22 development, thus paving the way to the development of new chemical probes and potential drugs.
Graphical abstract
Collapse
|
12
|
Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Pharmaceuticals (Basel) 2022; 15:ph15070866. [PMID: 35890163 PMCID: PMC9322956 DOI: 10.3390/ph15070866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure–activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.
Collapse
|
13
|
Divya KM, Savitha DP, Krishna GA, Dhanya TM, Mohanan PV. Crystal structure, DFT studies, Hirshfeld surface and energy framework analysis of 4-(5-nitro-thiophen-2-yl)-pyrrolo [1, 2-a] quinoxaline: A potential SARS-CoV-2 main protease inhibitor. J Mol Struct 2022; 1251:131932. [PMID: 36536784 PMCID: PMC9749918 DOI: 10.1016/j.molstruc.2021.131932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
The title compound 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-a] quinoxaline (5NO2TAAPP) was obtained by a straightforward catalyst-free reaction of 5-nitro-2- thiophene carboxaldehyde and 1-(2-aminophenyl) pyrrole in methanol and was structurally characterized by FT IR, UV-Vis, NMR spectroscopic techniques and elemental analysis. The structure of the compound has been confirmed by the single-crystal X-ray diffraction technique. The compound crystallizes in a monoclinic crystal system with space group P21/c. Unit cell dimensions: a = 12.2009(17) A0, b = 8.3544(9) A0, c = 13.9179(17) A0 and β = 104.980(5) A0. Hirshfeld surface analysis was carried out to understand the different intermolecular interactions. The two-dimensional fingerprint plot revealed the most prominent interactions in the compound. Theoretical calculations were executed using Density functional theory (DFT) by Gaussian09 software to develop optimized geometry and frontier molecular orbital analysis. Molecular docking studies revealed that the title compound is a potent inhibitor of Main protease 3CLpro with PDB ID: 6LU7, the viral protease which is responsible for the new Corona Virus Disease (COVID-19).
Collapse
Affiliation(s)
- K M Divya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
- Department of Chemistry, N.S.S College, University of Kerala, Cherthala, Alappuzha, India
| | - D P Savitha
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - G Anjali Krishna
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - T M Dhanya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| | - P V Mohanan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kerala, India
| |
Collapse
|
14
|
de Lucio H, García-Marín J, Sánchez-Alonso P, García-Soriano JC, Toro MÁ, Vaquero JJ, Gago F, Alajarín R, Jiménez-Ruiz A. Pyridazino-pyrrolo-quinoxalinium salts as highly potent and selective leishmanicidal agents targeting trypanothione reductase. Eur J Med Chem 2022; 227:113915. [PMID: 34695777 DOI: 10.1016/j.ejmech.2021.113915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/04/2022]
Abstract
Fifteen pyridazino-pyrrolo-quinoxalinium salts were synthesized and tested for their antiprotozoal activity against Leishmania infantum amastigotes. Eleven of them turned out to be leishmanicidal, with EC50 values in the nanomolar range, and displayed low toxicity against the human THP-1 cell line. Selectivity indices for these compounds range from 10 to more than 1000. Compounds 3b and 3f behave as potent inhibitors of the oxidoreductase activity of the essential enzyme trypanothione disulfide reductase (TryR). Interestingly, binding of 3f is not affected by high trypanothione concentrations, as revealed by the noncompetitive pattern of inhibition observed when tested in the presence of increasing concentrations of this substrate. Furthermore, when analyzed at varying NADPH concentrations, the characteristic pattern of hyperbolic uncompetitive inhibition supports the view that binding of NADPH to TryR is a prerequisite for inhibitor-protein association. Similar to other TryR uncompetitive inhibitors for NADPH, 3f is responsible for TryR-dependent reduction of cytochrome c in a reaction that is typically inhibited by superoxide dismutase.
Collapse
Affiliation(s)
- Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Javier García-Marín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Patricia Sánchez-Alonso
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | | | - Miguel Ángel Toro
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|