1
|
Vanucci-Bacqué C, Guilbaud V, Deleuzière M, Serpentini CL, Bedos-Belval F, Benoist E, Fery-Forgues S. Tricarbonylrhenium(I) complexes with aggregation-induced phosphorescence emission (AIPE) properties: Application to the selective detection of heparin and its main contaminant. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125932. [PMID: 40031119 DOI: 10.1016/j.saa.2025.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Phosphorescent tricarbonylrhenium(I) complexes that are more emissive in the aggregate state than in solution could be very valuable probes for biological analyses, but their development is delicate. The present work focuses on the synthesis and spectroscopic study of three new complexes that differ by the nature of their positively charged substituent. The dissolved complexes were very weakly emissive. Due to electrostatic interaction and aggregation, they showed a strong aggregation-induced phosphorescence enhancement (AIPE) effect in the presence of heparin, a polyanionic macromolecule of biological interest, and a weaker effect in the presence of chondroitin sulfate, which contains fewer negative charges. The magnitude of the AIPE effect depended on the nature and number of the cationic groups borne by the complex. However, it was weaker than expected from the behavior of the parent neutral complex studied in a conventional acetonitrile/water system, which highlights the challenge of accurately predicting solid-state emission properties for this class of molecules. This work introduces rhenium(I) complexes in the field of AIPE-active probes for the detection of polyanionic biomolecules.
Collapse
Affiliation(s)
- Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Valentine Guilbaud
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Maëlle Deleuzière
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
2
|
Le Garrec S, Martins-Bessa D, Wolff M, Delavaux-Nicot B, Mallet-Ladeira S, Serpentini CL, Benoist E, Bedos-Belval F, Fery-Forgues S. Dinuclear tricarbonylrhenium(I) complexes: impact of regioisomerism on the photoluminescence properties. Dalton Trans 2024; 53:16512-16529. [PMID: 39258561 DOI: 10.1039/d4dt01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dinuclear Re(I) complexes have proportionally been much less studied than mononuclear analogues. In particular, very little information is available about their solid-state emission properties. In this work, two structural isomers of dinuclear complexes (Bi-Re-metaPhe and Bi-Re-paraPhe), which differ by the relative position of the coordination spheres on a central phenyl ring, were synthesized and compared with each other and with the parent mononuclear compound (Mono-Re-Phe), from a theoretical and experimental point of view. In solution, the electronic, electrochemical and spectroscopic properties of the dinuclear complexes were almost identical, and rather close to those of the monomer. In the solid state, the photoluminescence (PL) efficiency of dimers was not higher than that of the monomer, but a clear mechanoresponsive luminescence (MRL) effect appeared only for the former ones. The positional isomerism influenced the amplitude of this effect, as well as the aggregation-induced emission (AIE) properties in a water-acetonitrile mixture. This study reveals the importance of positional isomerism to modulate the emission properties in the solid state. It also shows the advantage of dinuclear structures to access new MRL-active materials.
Collapse
Affiliation(s)
- Stéphen Le Garrec
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - David Martins-Bessa
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Mariusz Wolff
- Institut für Funktionelle Materialien und Katalyse, Universität Wien, Währinger Straße 38-42, 1090 Wien, Austria
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, 40-006 Katowice, Poland
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Sonia Mallet-Ladeira
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT-UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
3
|
Vanucci-Bacqué C, Wolff M, Delavaux-Nicot B, Abdallah AM, Mallet-Ladeira S, Serpentini CL, Bedos-Belval F, Fong KW, Ng XY, Low ML, Benoist E, Fery-Forgues S. 1,2,3-Triazol-5-ylidene- vs. 1,2,3-triazole-based tricarbonylrhenium(I) complexes: influence of a mesoionic carbene ligand on the electronic and biological properties. Dalton Trans 2024; 53:11276-11294. [PMID: 38776120 DOI: 10.1039/d4dt00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The tricarbonylrhenium complexes that incorporate a mesoionic carbene ligand represent an emerging and promising class of molecules, the solid-state optical properties of which have rarely been investigated. The aim of this comprehensive study is to compare three of these complexes with their 1,2,3-triazole-based analogues. The Hirshfeld surface analysis of the crystallographic data revealed that the triazolylidene derivatives are more prone to π-π interactions than their 1,2,3-triazole-based counterparts. The FT-IR and electrochemical data indicated a stronger electron donor effect from the organic ligand to the rhenium atom for triazolylidene derivatives, which was confirmed by DFT calculations. All compounds were phosphorescent in solution, where the 1,2,3-triazole-based complexes showed unusually strong dependence on dissolved oxygen. All compounds also emitted in the solid state, some of them exhibited marked solid-state luminescence enhancement (SLE) effect. The 1,2,3-triazole based complex Re-Phe even displayed astounding photoluminescence efficiency with quantum yield up to 0.69, and proved to be an excellent candidate for applications linked to aggregation-induced emission (AIE). Interestingly, one triazolylidene-based complex (Re-T-BOP) showed attractive antibacterial activity. This study highlights the potential of these new molecules for applications in the fields of photoluminescent and therapeutic materials, and provides the first bases for the design of efficient molecules in these research areas.
Collapse
Affiliation(s)
- Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Mariusz Wolff
- Institut für Funktionelle Materialien und Katalyse, Universität Wien, Währinger Straße 38-42, 1090 Wien, Österreich
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, 40-006 Katowice, Poland
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Abanoub Mosaad Abdallah
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - Sonia Mallet-Ladeira
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT-UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Kar Wai Fong
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Malaysia
| | - Xiao Ying Ng
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Malaysia
| | - May Lee Low
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
4
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
5
|
Poirot A, Vanucci-Bacqué C, Delavaux-Nicot B, Meslien C, Saffon-Merceron N, Serpentini CL, Bedos-Belval F, Benoist E, Fery-Forgues S. Using a diphenyl-bi-(1,2,4-triazole) tricarbonylrhenium(I) complex with intramolecular π-π stacking interaction for efficient solid-state luminescence enhancement. Dalton Trans 2023; 52:5453-5465. [PMID: 36880588 DOI: 10.1039/d2dt03573a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Since intramolecular π-π stacking interactions can modify the geometry, crystal packing mode, or even the electronic properties of transition metal complexes, they are also likely to influence the solid-state luminescence properties. Following this concept, a new tricarbonylrhenium(I) complex (Re-BPTA) was designed, based on a simple symmetrical 5,5'-dimethyl-4,4'-diphenyl-3,3'-bi-(1,2,4-triazole) organic ligand. The complex was prepared in good yield using a three-step procedure. The crystallographic study revealed that both phenyl rings are located on the same side of the molecule, and twisted by 71° and 62°, respectively, with respect to the bi-(1,2,4-triazole) unit. They overlap significantly, although they are slipped parallel to each other to minimize the intramolecular interaction energy. The π-π stacking interaction was also revealed by 1H NMR spectroscopy, in good agreement with the results of theoretical calculations. In organic solutions, a peculiar electrochemical signature was observed compared to closely-related pyridyl-triazole (pyta)-based complexes. With regard to the optical properties, the stiffness of the Re-BPTA complex led to the stabilization of the 3MLCT state, and thus to an enhancement of the red phosphorescence emission compared to the more flexible pyta complexes. However, an increased sensitivity to quenching by oxygen appeared. In the microcrystalline phase, the Re-BPTA complex showed strong photoluminescence (PL) emission in the green-yellow wavelength range (λPL = 548 nm, ΦPL = 0.52, 〈τPL〉 = 713 ns), and thus a dramatic solid-state luminescence enhancement (SLE) effect. These attractive emission properties can be attributed to the fact that the molecule undergoes little distortion between the ground state and the triplet excited state, as well as to a favorable intermolecular arrangement that minimizes detrimental interactions in the crystal lattice. The aggregation-induced phosphorescence emission (AIPE) effect was clear, with a 7-fold increase in emission intensity at 546 nm, although the aggregates formed in aqueous medium were much less emissive than the native microcrystalline powder. In this work, the rigidity of the Re-BPTA complex is reinforced by the intramolecular π-π stacking interaction of the phenyl rings. This original concept provides a rhenium tricarbonyl compound with very good SLE properties, and could be used more widely to successfully develop this area of research.
Collapse
Affiliation(s)
- Alexandre Poirot
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Clarisse Meslien
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire IMRCP, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
6
|
Ma L, Wang Y, Wang X, Zhu Q, Wang Y, Li L, Cheng HB, Zhang J, Liang XJ. Transition metal complex-based smart AIEgens explored for cancer diagnosis and theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Mule RD, Roy R, Mandal K, Chopra D, Dutta T, Sancheti SP, Shinde PS, Banerjee S, Lal Koner A, Bhowal R, Senthilkumar B, Patil NT. Interplay of Anion‐π
+
and π
+
‐π
+
Interactions in Novel Pyrido[2,1‐
a
]isoquinolinium‐Based AIEgens ‐ Substituent‐ and Counterion‐Dependent Fluorescence Modulation and Applications in Live Cell Mitochondrial Imaging**. Chemistry 2022; 28:e202200632. [DOI: 10.1002/chem.202200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Ravindra D. Mule
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Rupam Roy
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Koushik Mandal
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Tanoy Dutta
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Shashank P. Sancheti
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Popat S. Shinde
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Somsuvra Banerjee
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Rohit Bhowal
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Beeran Senthilkumar
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Nitin T. Patil
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
8
|
Zuo Y, Shen H, Sun F, Li P, Sun J, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission Luminogens for Cell Death Research. ACS BIO & MED CHEM AU 2022; 2:236-257. [PMID: 37101570 PMCID: PMC10114857 DOI: 10.1021/acsbiomedchemau.1c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell death is closely related to various diseases, and monitoring and controlling cell death is a promising strategy to develop efficient therapy. Aggregation-induced emission luminogens (AIEgens) are ideal candidates for developing novel theranostic agents because of their intriguing properties in the aggregate state. The rational application of AIE materials in cell death-related research is still in its infancy but has shown great clinical potential. This review discussed the research frontier and our understanding of AIE materials in various subroutines of cell death, including apoptosis, necrosis, immunogenic cell death, pyroptosis, autophagy, lysosome-dependent cell death, and ferroptosis. We hope that the new insights can be offered to this growing field and attract more researchers to provide valuable contributions.
Collapse
Affiliation(s)
- Yunfei Zuo
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Hanchen Shen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Feiyi Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Pei Li
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Department
of Gastrointestinal Surgery, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| | - Jianwei Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen, 2001
Longxiang Boulevard, Longgang District, Shenzhen
City, Guangdong 518172, China
| |
Collapse
|